2018 AMC 10A Problems/Problem 16: Difference between revisions
Rockmanex3 (talk | contribs) |
m added "Problem" to the top |
||
| Line 1: | Line 1: | ||
==Problem== | |||
Right triangle <math>ABC</math> has leg lengths <math>AB=20</math> and <math>BC=21</math>. Including <math>\overline{AB}</math> and <math>\overline{BC}</math>, how many line segments with integer length can be drawn from vertex <math>B</math> to a point on hypotenuse <math>\overline{AC}</math>? | Right triangle <math>ABC</math> has leg lengths <math>AB=20</math> and <math>BC=21</math>. Including <math>\overline{AB}</math> and <math>\overline{BC}</math>, how many line segments with integer length can be drawn from vertex <math>B</math> to a point on hypotenuse <math>\overline{AC}</math>? | ||
Revision as of 00:35, 5 December 2019
Problem
Right triangle
has leg lengths
and
. Including
and
, how many line segments with integer length can be drawn from vertex
to a point on hypotenuse
?
Solution
As the problem has no diagram, we draw a diagram. The hypotenuse has length
. Let
be the foot of the altitude from
to
. Note that
is the shortest possible length of any segment. Writing the area of the triangle in two ways, we can solve for
, which is between
and
.
Let the line segment be
, with
on
. As you move
along the hypotenuse from
to
, the length of
strictly decreases, hitting all the integer values from
(IVT). Similarly, moving
from
to
hits all the integer values from
. This is a total of
line segments.
(asymptote diagram added by elements2015)
See Also
| 2018 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 15 |
Followed by Problem 17 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing