|
|
| Line 6: |
Line 6: |
|
| |
|
| <math>\textbf{(A) }3\sqrt{3}-\pi\qquad\textbf{(B) }4\sqrt{3}-\frac{4\pi}{3}\qquad\textbf{(C) }2\sqrt{3}\qquad\textbf{(D) }4\sqrt{3}-\frac{2\pi}{3}\qquad\textbf{(E) }4+\frac{4\pi}{3}</math> | | <math>\textbf{(A) }3\sqrt{3}-\pi\qquad\textbf{(B) }4\sqrt{3}-\frac{4\pi}{3}\qquad\textbf{(C) }2\sqrt{3}\qquad\textbf{(D) }4\sqrt{3}-\frac{2\pi}{3}\qquad\textbf{(E) }4+\frac{4\pi}{3}</math> |
|
| |
| ==Solution==
| |
|
| |
| Let the centers of the circles containing arcs <math>\overarc{SR}</math> and <math>\overarc{TR}</math> be <math>X</math> and <math>Y</math>, respectively. Extend <math>\overline{US}</math> and <math>\overline{UT}</math> to <math>X</math> and <math>Y</math>, and connect point <math>X</math> with point <math>Y</math>.
| |
| <asy>
| |
| unitsize(1 cm);
| |
| pair U,S,T,R,X,Y;
| |
| U =(2,3.464);
| |
| S=(1,1.732);
| |
| T=(3,1.732);
| |
| R=(2,0);
| |
| X=(0,0);
| |
| Y=(4,0);
| |
| draw(U--S);
| |
| draw(S--U--T);
| |
| draw(S--X--Y--T,red);
| |
| draw(arc(X,R,S),red);
| |
| draw(arc(Y,T,R),red);
| |
| label("$U$",U, N);
| |
| label("$S$", S, W);
| |
| label("$T$", T, E);
| |
| label("$R$", R, S);
| |
| label("$X$",X, W);
| |
| label("$Y$", Y, E);
| |
| </asy>
| |
| We can clearly see that <math>\triangle UXY</math> is an equilateral triangle, because the problem states that <math>m\angle TUS = 60^\circ</math>. We can figure out that <math>m\angle SXR= 60^\circ</math> and <math>m\angle TYR = 60^\circ</math> because they are <math>\frac{1}{6}</math> of a circle. The area of the figure is equal to <math>[\triangle UXY]</math> minus the combined area of the <math>2</math> sectors of the circles(in red). Using the area formula for an equilateral triangle, <math>\frac{a^2\sqrt{3}}{4},</math> where <math>a</math> is the side length of the equilateral triangle, <math>[\triangle UXY]</math> is <math>\frac{\sqrt 3}{4} \cdot 4^2 = 4\sqrt 3.</math> The combined area of the <math>2</math> sectors is <math>2\cdot\frac16\cdot\pi r^2</math>, which is <math>\frac 13\pi \cdot 2^2 = \frac{4\pi}{3}.</math> Thus, our final answer is <math>\boxed{\textbf{(B)}\ 4\sqrt{3}-\frac{4\pi}{3}}.</math>
| |
|
| |
|
| ==See Also== | | ==See Also== |
Revision as of 22:23, 9 November 2019
Problem 25
In the figure shown,
and
are line segments each of length 2, and
. Arcs
and
are each one-sixth of a circle with radius 2. What is the area of the region shown?
See Also
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination