2011 AMC 10B Problems/Problem 18: Difference between revisions
Firebolt360 (talk | contribs) |
|||
| Line 47: | Line 47: | ||
Let <math>\angle{DMC} = \angle{AMD} = \theta</math>. If we let <math>AM = x</math>, we have that <math>MD = \sqrt{x^2 + 9}</math>, by the Pythagorean Theorem, and similarily, <math>MC = \sqrt{x^2 - 12x + 45}</math>. Applying LOC, we see that | Let <math>\angle{DMC} = \angle{AMD} = \theta</math>. If we let <math>AM = x</math>, we have that <math>MD = \sqrt{x^2 + 9}</math>, by the Pythagorean Theorem, and similarily, <math>MC = \sqrt{x^2 - 12x + 45}</math>. Applying LOC, we see that | ||
<cmath>2x^2 + 54 - 12x - 2 \sqrt{x^4 - 12x^3 + 54x^2 - 108x + 405} \cdot cos (\theta) = 36</cmath> and <cmath>tan (\theta) = \frac{3}{x}</cmath> YAY!!! We have two equations for two variables... that are terribly ugly. Well, we'll try to solve it. First of all, note that <math>sin (\theta) = \frac{3}{\sqrt{x^2+9}}</math>, so solving for <math>cos (\theta)</math> in terms of <math>x</math>, we get that <math>cos (\theta) = \frac{x \cdot \sqrt{x^2 + 9}}{x^2 + 9}</math>. The equation now becomes | <cmath>2x^2 + 54 - 12x - 2 \sqrt{x^4 - 12x^3 + 54x^2 - 108x + 405} \cdot \cos (\theta) = 36</cmath> and <cmath>\tan (\theta) = \frac{3}{x}</cmath> YAY!!! We have two equations for two variables... that are terribly ugly. Well, we'll try to solve it. First of all, note that <math>\sin (\theta) = \frac{3}{\sqrt{x^2+9}}</math>, so solving for <math>\cos (\theta)</math> in terms of <math>x</math>, we get that <math>\cos (\theta) = \frac{x \cdot \sqrt{x^2 + 9}}{x^2 + 9}</math>. The equation now becomes | ||
<cmath>2x^2 + 54 - 12x - 2 \sqrt{x^4 - 12x^3 + 54x^2 - 108x + 405} \cdot \frac{x \cdot \sqrt{x^2 + 9}}{x^2 + 9} = 36</cmath> | <cmath>2x^2 + 54 - 12x - 2 \sqrt{x^4 - 12x^3 + 54x^2 - 108x + 405} \cdot \frac{x \cdot \sqrt{x^2 + 9}}{x^2 + 9} = 36</cmath> | ||
Revision as of 11:04, 26 October 2019
Problem
Rectangle
has
and
. Point
is chosen on side
so that
. What is the degree measure of
?
Solution 1
It is given that
. Since
and
are alternate interior angles and
,
. Use the Base Angle Theorem to show
. We know that
is a rectangle, so it follows that
. We notice that
is a
triangle, and
. If we let
be the measure of
then
Solution 2 (with trig)
Let
. If we let
, we have that
, by the Pythagorean Theorem, and similarily,
. Applying LOC, we see that
and
YAY!!! We have two equations for two variables... that are terribly ugly. Well, we'll try to solve it. First of all, note that
, so solving for
in terms of
, we get that
. The equation now becomes
Simplifying, we get
Now, we apply the quartic formula to get
We can easily see that
is an invalid solution. Thus,
.
Finally, since
,
, where
is any integer. Converting to degrees, we have that
. Since
, we have that
.
~ilovepi3.14
See Also
| 2011 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 17 |
Followed by Problem 19 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing