Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2000 AMC 12 Problems/Problem 20: Difference between revisions

Aopsuser101 (talk | contribs)
Aopsuser101 (talk | contribs)
Line 12: Line 12:
== Solution ==  
== Solution ==  
=== Solution 1 ===
=== Solution 1 ===
We can multiply all given expressions to get:
We multiply all given expressions to get:
<cmath>(1) xyz + x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{xyz} = \frac{28}{3}</cmath>
<cmath>(1) xyz + x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{xyz} = \frac{28}{3}</cmath>
Adding all the given expressions gives that
Adding all the given expressions gives that
<cmath>(2) x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 4 + \frac{7}{3} + 1 = \frac{22}{3}</cmath>
<cmath>(2) x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 4 + \frac{7}{3} + 1 = \frac{22}{3}</cmath>
We subtract <math>(2)</math> from <math>(1)</math> to get that <math>xyz + \frac{1}{xyz} = 2</math>. Hence, <math>xyz = 1 \rightarrow B</math>.
We subtract <math>(2)</math> from <math>(1)</math> to get that <math>xyz + \frac{1}{xyz} = 2</math>. Hence, by inspection, <math>\boxed{xyz = 1 \rightarrow B}</math>.


=== Solution 2 ===
=== Solution 2 ===

Revision as of 11:01, 6 July 2019

Problem

If $x,y,$ and $z$ are positive numbers satisfying

\[x + 1/y = 4,\qquad y + 1/z = 1, \qquad \text{and} \qquad z + 1/x = 7/3\]

Then what is the value of $xyz$ ?

$\text {(A)}\ 2/3 \qquad \text {(B)}\ 1 \qquad \text {(C)}\ 4/3 \qquad \text {(D)}\ 2 \qquad \text {(E)}\ 7/3$

Solution

Solution 1

We multiply all given expressions to get: \[(1) xyz + x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{xyz} = \frac{28}{3}\] Adding all the given expressions gives that \[(2) x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 4 + \frac{7}{3} + 1 = \frac{22}{3}\] We subtract $(2)$ from $(1)$ to get that $xyz + \frac{1}{xyz} = 2$. Hence, by inspection, $\boxed{xyz = 1 \rightarrow B}$.

Solution 2

We have a system of three equations and three variables, so we can apply repeated substitution.

\[4 = x + \frac{1}{y} = x + \frac{1}{1 - \frac{1}{z}} = x + \frac{1}{1-\frac{1}{7/3-1/x}} = x + \frac{7x-3}{4x-3}\]

Multiplying out the denominator and simplification yields $4(4x-3) = x(4x-3) + 7x - 3 \Longrightarrow (2x-3)^2 = 0$, so $x = \frac{3}{2}$. Substituting leads to $y = \frac{2}{5}, z = \frac{5}{3}$, and the product of these three variables is $1$.

Also see

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination