2019 AIME I Problems/Problem 3: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
==Problem 3== | ==Problem 3== | ||
In <math>\triangle PQR</math>, <math>PR=15</math>, <math>QR=20</math>, and <math>PQ=25</math>. Points <math>A</math> and <math>B</math> lie on <math>\overline{PQ}</math>, points <math>C</math> and <math>D</math> lie on <math>\overline{QR}</math>, and points <math>E</math> and <math>F</math> lie on <math>\overline{PR}</math>, with <math>PA=QB=QC=RD=RE=PF=5</math>. Find the area of hexagon <math>ABCDEF</math>. | In <math>\triangle PQR</math>, <math>PR=15</math>, <math>QR=20</math>, and <math>PQ=25</math>. Points <math>A</math> and <math>B</math> lie on <math>\overline{PQ}</math>, points <math>C</math> and <math>D</math> lie on <math>\overline{QR}</math>, and points <math>E</math> and <math>F</math> lie on <math>\overline{PR}</math>, with <math>PA=QB=QC=RD=RE=PF=5</math>. Find the area of hexagon <math>ABCDEF</math>. | ||
Revision as of 11:36, 19 March 2019
Problem 3
In
,
,
, and
. Points
and
lie on
, points
and
lie on
, and points
and
lie on
, with
. Find the area of hexagon
.
Solution 1
We know the area of the hexagon
to be
. Since
, we know that
is a right triangle. Thus the area of
is
. Another way to compute the area is
Then the area of
. Preceding in a similar fashion for
, the area of
is
. Since
, the area of
. Thus our desired answer is
Solution 2
Let
be the origin. Noticing that the triangle is a 3-4-5 right triangle, we can see that
, and
. Using the shoelace theorem, the area is
.
Video Solution
https://www.youtube.com/watch?v=4jOfXNiQ6WM
See Also
| 2019 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing