2019 AIME I Problems/Problem 12: Difference between revisions
No edit summary |
|||
| Line 1: | Line 1: | ||
==Problem 12== | ==Problem 12== | ||
Given <math>f(z) = z^2-19z</math>, there are complex numbers <math>z</math> with the property that <math>z</math>, <math>f(z)</math>, and <math>f(f(z))</math> are the vertices of a right triangle in the complex plane with a right angle at <math>f(z)</math>. There are positive integers <math>m</math> and <math>n</math> such that one such value of <math>z</math> is <math>m+\sqrt{n}+11i</math>. Find <math>m+n</math>. | Given <math>f(z) = z^2-19z</math>, there are complex numbers <math>z</math> with the property that <math>z</math>, <math>f(z)</math>, and <math>f(f(z))</math> are the vertices of a right triangle in the complex plane with a right angle at <math>f(z)</math>. There are positive integers <math>m</math> and <math>n</math> such that one such value of <math>z</math> is <math>m+\sqrt{n}+11i</math>. Find <math>m+n</math>. | ||
Revision as of 04:08, 15 March 2019
Problem 12
Given
, there are complex numbers
with the property that
,
, and
are the vertices of a right triangle in the complex plane with a right angle at
. There are positive integers
and
such that one such value of
is
. Find
.
Solution
We will use the fact that segments
and
are perpendicular in the complex plane if and only if
. To prove this, when dividing two complex numbers you subtract the angle of one from the other, and if the two are perpendicular, subtracting these angles will yield an imaginary number with no real part.
Now to apply this:
The factorization of the nasty denominator above is made easier with the intuition that
must be a divisor for the problem to lead anywhere. Now we know
so using the fact that the imaginary part of
is
and calling the real part r,
solving the above quadratic yields
so our answer is
See Also
| 2019 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 11 |
Followed by Problem 13 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing