2019 AMC 10B Problems/Problem 16: Difference between revisions
Sevenoptimus (talk | contribs) Thoroughly cleaned up the solutions for formatting, LaTeX, grammar, clarity and readability (especially Solution 2, which also contained errors/typos and needed to be streamlined) |
Ironicninja (talk | contribs) |
||
| Line 17: | Line 17: | ||
By the Law of Cosines in <math>\triangle BED</math>, if <math>BD = d</math>, we have <cmath>\begin{split}&d^2 = (3x)^2+(3x)^2-2\cdot\frac{-3}{5}(3x)(3x) \\ \Rightarrow \ &d^2 = 18x^2 + \frac{54x^2}{5} = \frac{144x^2}{5} \\ \Rightarrow \ &d = \frac{12x}{\sqrt{5}}\end{split}</cmath> Now <math>AD = AB - BD = 4x\sqrt{5} - \frac{12x}{\sqrt{5}} = \frac{8x}{\sqrt{5}}</math>. Thus the answer is <math>\frac{\left(\frac{8x}{\sqrt{5}}\right)}{\left(\frac{12x}{\sqrt{5}}\right)} = \frac{8}{12} = \boxed{\textbf{(A) }2:3}</math>. | By the Law of Cosines in <math>\triangle BED</math>, if <math>BD = d</math>, we have <cmath>\begin{split}&d^2 = (3x)^2+(3x)^2-2\cdot\frac{-3}{5}(3x)(3x) \\ \Rightarrow \ &d^2 = 18x^2 + \frac{54x^2}{5} = \frac{144x^2}{5} \\ \Rightarrow \ &d = \frac{12x}{\sqrt{5}}\end{split}</cmath> Now <math>AD = AB - BD = 4x\sqrt{5} - \frac{12x}{\sqrt{5}} = \frac{8x}{\sqrt{5}}</math>. Thus the answer is <math>\frac{\left(\frac{8x}{\sqrt{5}}\right)}{\left(\frac{12x}{\sqrt{5}}\right)} = \frac{8}{12} = \boxed{\textbf{(A) }2:3}</math>. | ||
~IronicNinja | |||
==Solution 3== | ==Solution 3== | ||
Revision as of 23:04, 17 February 2019
Problem
In
with a right angle at
, point
lies in the interior of
and point
lies in the interior of
so that
and the ratio
. What is the ratio
Solution 1
Without loss of generality, let
and
. Let
and
. As
and
are isosceles,
and
. Then
, so
is a
triangle with
.
Then
, and
is a
triangle.
In isosceles triangles
and
, drop altitudes from
and
onto
; denote the feet of these altitudes by
and
respectively. Then
by AAA similarity, so we get that
, and
. Similarly we get
, and
.
Solution 2
Let
, and
. (For this solution,
is above
, and
is to the right of
). Also let
, so
, which implies
. Similarly,
, which implies
. This further implies that
.
Now we see that
. Thus
is a right triangle, with side lengths of
,
, and
(by the Pythagorean Theorem, or simply the Pythagorean triple
). Therefore
(by definition),
, and
. Hence
(by the double angle formula), giving
.
By the Law of Cosines in
, if
, we have
Now
. Thus the answer is
.
~IronicNinja
Solution 3
Draw a nice big diagram and measure. (Note: this strategy should only be used as a last resort!)
See Also
| 2019 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 15 |
Followed by Problem 17 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing