Art of Problem Solving

1983 AIME Problems/Problem 6: Difference between revisions

Sevenoptimus (talk | contribs)
m Fixed problem statement
Sevenoptimus (talk | contribs)
Cleaned up the solutions
Line 5: Line 5:
== Solution ==
== Solution ==
=== Solution 1 ===
=== Solution 1 ===
First, we try to find a relationship between the numbers we're provided with and <math>49</math>. We realize that <math>49=7^2</math> and both <math>6</math> and <math>8</math> are greater or less than <math>7</math> by <math>1</math>.  
Firstly, we try to find a relationship between the numbers we're provided with and <math>49</math>. We notice that <math>49=7^2</math>, and both <math>6</math> and <math>8</math> are greater or less than <math>7</math> by <math>1</math>.  


Expressing the numbers in terms of <math>7</math>, we get <math>(7-1)^{83}+(7+1)^{83}</math>.
Thus, expressing the numbers in terms of <math>7</math>, we get <math>a_{83} = (7-1)^{83}+(7+1)^{83}</math>.


Applying the [[Binomial Theorem]], half of our terms cancel out and we are left with <math>2(7^{83}+3403\cdot7^{81}+\cdots + 83\cdot7)</math>. We realize that all of these terms are divisible by <math>49</math> except the final term.
Applying the [[Binomial Theorem]], half of our terms cancel out and we are left with <math>2(7^{83}+3403\cdot7^{81}+\cdots + 83\cdot7)</math>. We realize that all of these terms are divisible by <math>49</math> except the final term.
Line 14: Line 14:


=== Solution 2 ===
=== Solution 2 ===
Since <math>\phi(49) = 42</math> (the [[Euler's totient function]]), by [[Euler's Totient Theorem]], <math>a^{42} \equiv 1 \pmod{49}</math> where <math>\text{gcd}(a,49) = 1</math>. Thus <math>6^{83} + 8^{83} \equiv 6^{2(42)-1}+8^{2(42)-1} </math>  
Since <math>\phi(49) = 42</math> (see [[Euler's totient function]]), [[Euler's Totient Theorem]] tells us that <math>a^{42} \equiv 1 \pmod{49}</math> where <math>\text{gcd}(a,49) = 1</math>. Thus <math>6^{83} + 8^{83} \equiv 6^{2(42)-1}+8^{2(42)-1} </math>  
<math>\equiv 6^{-1} + 8^{-1} \equiv \frac{8+6}{48} </math> <math>
<math>\equiv 6^{-1} + 8^{-1} \equiv \frac{8+6}{48} </math> <math>
\equiv \frac{14}{-1}\equiv \boxed{035} \pmod{49}</math>.
\equiv \frac{14}{-1}\equiv \boxed{035} \pmod{49}</math>.

Revision as of 18:24, 15 February 2019

Problem

Let $a_n=6^{n}+8^{n}$. Determine the remainder upon dividing $a_ {83}$ by $49$.

Solution

Solution 1

Firstly, we try to find a relationship between the numbers we're provided with and $49$. We notice that $49=7^2$, and both $6$ and $8$ are greater or less than $7$ by $1$.

Thus, expressing the numbers in terms of $7$, we get $a_{83} = (7-1)^{83}+(7+1)^{83}$.

Applying the Binomial Theorem, half of our terms cancel out and we are left with $2(7^{83}+3403\cdot7^{81}+\cdots + 83\cdot7)$. We realize that all of these terms are divisible by $49$ except the final term.

After some quick division, our answer is $\boxed{035}$.

Solution 2

Since $\phi(49) = 42$ (see Euler's totient function), Euler's Totient Theorem tells us that $a^{42} \equiv 1 \pmod{49}$ where $\text{gcd}(a,49) = 1$. Thus $6^{83} + 8^{83} \equiv 6^{2(42)-1}+8^{2(42)-1}$ $\equiv 6^{-1} + 8^{-1} \equiv \frac{8+6}{48}$ $\equiv \frac{14}{-1}\equiv \boxed{035} \pmod{49}$.

  • Alternatively, we could have noted that $a^b\equiv a^{b\pmod{\phi{(n)}}}\pmod n$. This way, we have $6^{83}\equiv 6^{83\pmod {42}}\equiv 6^{-1}\pmod {49}$, and can finish the same way.

See Also

1983 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions