Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2019 AMC 10B Problems/Problem 24: Difference between revisions

Put in the problem...
A1b2 (talk | contribs)
No edit summary
Line 1: Line 1:
Define a sequence recursively by <math>x_0=5</math> and
==Problem==
<cmath>x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}</cmath>for all nonnegative integers <math>n.</math> Let <math>m</math> be the least positive integer such that
 
Define a sequence recursively by <math>x_0=5</math> and <cmath>x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}</cmath> for all nonnegative integers <math>n.</math> Let <math>m</math> be the least positive integer such that
<cmath>x_m\leq 4+\frac{1}{2^{20}}.</cmath>In which of the following intervals does <math>m</math> lie?
<cmath>x_m\leq 4+\frac{1}{2^{20}}.</cmath>In which of the following intervals does <math>m</math> lie?


<math>\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty]</math>
<math>\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty)</math>
 
==Solution==
 
 
 
==See Also==
{{AMC12 box|year=2019|ab=B|num-b=23|num-a=25}}
{{MAA Notice}}

Revision as of 17:04, 14 February 2019

Problem

Define a sequence recursively by $x_0=5$ and \[x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}\] for all nonnegative integers $n.$ Let $m$ be the least positive integer such that \[x_m\leq 4+\frac{1}{2^{20}}.\]In which of the following intervals does $m$ lie?

$\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty)$

Solution

See Also

2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination