2019 AMC 10B Problems/Problem 6: Difference between revisions
No edit summary |
Ironicninja (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
There is a real <math>n</math> such that <math>(n+1)! + (n+2)! = n! \cdot 440</math>. What is the sum of the digits of <math>n</math>? | |||
<math>\textbf{(A) }3\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12</math> | |||
==Solution== | |||
<math>(n+1)n! + (n+2)(n+1)n! = 440 \cdot n!</math> | |||
<math>n![n+1 + (n+2)(n+1)] = 440 \cdot n!</math> | |||
<math>n + 1 + n^2 + 3n + 2 = 440</math> | |||
<math>n^2 + 4n - 437</math> | |||
<math>\frac{-4\pm \sqrt{16+437\cdot4}}{2} \Rightarrow \frac{-4\pm 42}{2}\Rightarrow \frac{38}{2} \Rightarrow \boxed{D) 19}</math> | |||
iron | |||
Revision as of 12:38, 14 February 2019
There is a real
such that
. What is the sum of the digits of
?
Solution
iron