2014 AMC 10B Problems/Problem 21: Difference between revisions
Firebolt360 (talk | contribs) |
No edit summary |
||
| Line 5: | Line 5: | ||
[[Category: Introductory Geometry Problems]] | [[Category: Introductory Geometry Problems]] | ||
==Solution== | ==Solution 1== | ||
<asy> | <asy> | ||
| Line 71: | Line 71: | ||
The two diagonals are <math>\overline{AC}</math> and <math>\overline{BD}</math>. Using the Pythagorean theorem again on <math>\bigtriangleup AFC</math> and <math>\bigtriangleup BED</math>, we can find these lengths to be <math>\sqrt{96+529} = 25</math> and <math>\sqrt{96+961} = \sqrt{1057}</math>. Since <math>\sqrt{96+529}<\sqrt{96+961}</math>, <math>25</math> is the shorter length, so the answer is <math>\boxed{\textbf{(B) }25}</math>. | The two diagonals are <math>\overline{AC}</math> and <math>\overline{BD}</math>. Using the Pythagorean theorem again on <math>\bigtriangleup AFC</math> and <math>\bigtriangleup BED</math>, we can find these lengths to be <math>\sqrt{96+529} = 25</math> and <math>\sqrt{96+961} = \sqrt{1057}</math>. Since <math>\sqrt{96+529}<\sqrt{96+961}</math>, <math>25</math> is the shorter length, so the answer is <math>\boxed{\textbf{(B) }25}</math>. | ||
===Solution 2=== | |||
<asy> | |||
size(7cm); | |||
pair A,B,C,D,CC,DD; | |||
A = (-2,7); | |||
B = (14,7); | |||
C = (10,0); | |||
D = (0,0); | |||
E = (4,7); | |||
draw(A--B--C--D--cycle); | |||
draw(D--E); | |||
label("10",(A+D)/2,W); | |||
label("14",(B+C)/2,E); | |||
label("$A$",A,NW); | |||
label("$B$",B,NE); | |||
label("$C$",C,SE); | |||
label("$D$",D,SW); | |||
label("$D$",D,SW); | |||
label("$21$",(C+D)/2,S); | |||
</asy> | |||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2014|ab=B|num-b=20|num-a=22}} | {{AMC10 box|year=2014|ab=B|num-b=20|num-a=22}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 15:35, 19 January 2019
Problem
Trapezoid
has parallel sides
of length
and
of length
. The other two sides are of lengths
and
. The angles
and
are acute. What is the length of the shorter diagonal of
?
Solution 1
In the diagram,
.
Denote
and
. In right triangle
, we have from the Pythagorean theorem:
. Note that since
, we have
. Using the Pythagorean theorem in right triangle
, we have
.
We isolate the
term in both equations, getting
and
.
Setting these equal, we have
. Now, we can determine that
.
The two diagonals are
and
. Using the Pythagorean theorem again on
and
, we can find these lengths to be
and
. Since
,
is the shorter length, so the answer is
.
Solution 2
size(7cm);
pair A,B,C,D,CC,DD;
A = (-2,7);
B = (14,7);
C = (10,0);
D = (0,0);
E = (4,7);
draw(A--B--C--D--cycle);
draw(D--E);
label("10",(A+D)/2,W);
label("14",(B+C)/2,E);
label("$A$",A,NW);
label("$B$",B,NE);
label("$C$",C,SE);
label("$D$",D,SW);
label("$D$",D,SW);
label("$21$",(C+D)/2,S);
(Error making remote request. Unknown error_msg)
See Also
| 2014 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 20 |
Followed by Problem 22 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing