Art of Problem Solving

2003 AMC 12A Problems/Problem 24: Difference between revisions

Mp8148 (talk | contribs)
Mp8148 (talk | contribs)
Line 18: Line 18:
<cmath>=2-(\log_{a}b+\frac {1}{\log_{a}b})</cmath>
<cmath>=2-(\log_{a}b+\frac {1}{\log_{a}b})</cmath>


Since <math>a</math> and <math>b</math> are both positive, using [[AM-GM]] gives that the term in parentheses must be at least <math>2</math>, so the largest possible values is <math>2-2=0 \Rightarrow{\textbf{B}}.</math>
Since <math>a</math> and <math>b</math> are both positive, using [[AM-GM]] gives that the term in parentheses must be at least <math>2</math>, so the largest possible values is <math>2-2=0 \Rightarrow \boxed{\textbf{B}}.</math>


Note that the maximum occurs when <math>a=b</math>.
Note that the maximum occurs when <math>a=b</math>.

Revision as of 21:58, 4 January 2019

Problem

If $a\geq b > 1,$ what is the largest possible value of $\log_{a}(a/b) + \log_{b}(b/a)?$

$\mathrm{(A)}\ -2      \qquad \mathrm{(B)}\ 0     \qquad \mathrm{(C)}\ 2      \qquad \mathrm{(D)}\ 3      \qquad \mathrm{(E)}\ 4$

Solution

Using logarithmic rules, we see that

\[\log_{a}a-\log_{a}b+\log_{b}b-\log_{b}a = 2-(\log_{a}b+\log_{b}a)\] \[=2-(\log_{a}b+\frac {1}{\log_{a}b})\]

Since $a$ and $b$ are both positive, using AM-GM gives that the term in parentheses must be at least $2$, so the largest possible values is $2-2=0 \Rightarrow \boxed{\textbf{B}}.$

Note that the maximum occurs when $a=b$.

See Also

2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing