2018 AIME II Problems/Problem 11: Difference between revisions
Burunduchok (talk | contribs) |
|||
| Line 3: | Line 3: | ||
Find the number of permutations of <math>1, 2, 3, 4, 5, 6</math> such that for each <math>k</math> with <math>1</math> <math>\leq</math> <math>k</math> <math>\leq</math> <math>5</math>, at least one of the first <math>k</math> terms of the permutation is greater than <math>k</math>. | Find the number of permutations of <math>1, 2, 3, 4, 5, 6</math> such that for each <math>k</math> with <math>1</math> <math>\leq</math> <math>k</math> <math>\leq</math> <math>5</math>, at least one of the first <math>k</math> terms of the permutation is greater than <math>k</math>. | ||
==Solution== | ==Solution 1== | ||
If the first number is <math>6</math>, then there are no restrictions. There are <math>5!</math>, or <math>120</math> ways to place the other <math>5</math> numbers. | If the first number is <math>6</math>, then there are no restrictions. There are <math>5!</math>, or <math>120</math> ways to place the other <math>5</math> numbers. | ||
| Line 73: | Line 73: | ||
Grand Total : <math>120 + 96 + 90 + 84 + 71 = | Grand Total : <math>120 + 96 + 90 + 84 + 71 = \boxed{461}</math> | ||
==Solution 2== | |||
{ | If <math>6</math> is the first number, then there are no restrictions. There are <math>5!</math>, or <math>120</math> ways to place the other <math>5</math> numbers. | ||
If <math>6</math> is the second number, then the first number can be <math>2, 3, 4, or 5</math>, and there are <math>4!</math> ways to place the other <math>4</math> numbers. <math>4 \cdot 4! = 96</math> ways. | |||
If <math>6</math> is the third number, then we cannot have the following: | |||
1 _ 6 _ _ _ <math>\implies</math> 24 ways | |||
2 1 6 _ _ _ <math>\implies</math> 6 ways | |||
<math>120 - 24 - 6 = 90</math> ways | |||
If <math>6</math> is the fourth number, then we cannot have the following: | |||
1 _ _ 6 _ _ <math>\implies</math> 24 ways | |||
2 1 _ 6 _ _ <math>\implies</math> 6 ways | |||
2 3 1 6 _ _ <math>\implies</math> 2 ways | |||
3 1 2 6 _ _ <math>\implies</math> 2 ways | |||
3 2 1 6 _ _ <math>\implies</math> 2 ways | |||
<math>120 - 24 - 6 - 2 - 2 - 2 = 84</math> ways | |||
If <math>6</math> is the fifth number, then we cannot have the following: | |||
_ _ _ _ 6 5 <math>\implies</math> 24 ways | |||
1 5 _ _ 6 _ <math>\implies</math> 6 ways | |||
1 _ 5 _ 6 _ <math>\implies</math> 6 ways | |||
2 1 5 _ 6 _ <math>\implies</math> 2 ways | |||
1 _ _ 5 6 _ <math>\implies</math> 6 ways | |||
2 1 _ 5 6 _ <math>\implies</math> 2 ways | |||
2 3 1 5 6 4, 3 1 2 5 6 4, 3 2 1 5 6 4 <math>\implies</math> 3 ways | |||
<math>120 - 24 - 6 - 6 - 2 - 6 - 2 - 3 = 71</math> ways | |||
Grand Total : <math>120 + 96 + 90 + 84 + 71 = \boxed{461}</math> | |||
Revision as of 15:06, 14 April 2018
Problem
Find the number of permutations of
such that for each
with
, at least one of the first
terms of the permutation is greater than
.
Solution 1
If the first number is
, then there are no restrictions. There are
, or
ways to place the other
numbers.
If the first number is
,
can go in four places, and there are
ways to place the other
numbers.
ways.
If the first number is
, ....
4 6 _ _ _ _
24 ways
4 _ 6 _ _ _
24 ways
4 _ _ 6 _ _
24 ways
4 _ _ _ 6 _
5 must go between
and
, so there are
ways.
ways if 4 is first.
If the first number is
, ....
3 6 _ _ _ _
24 ways
3 _ 6 _ _ _
24 ways
3 1 _ 6 _ _
4 ways
3 2 _ 6 _ _
4 ways
3 4 _ 6 _ _
6 ways
3 5 _ 6 _ _
6 ways
3 5 _ _ 6 _
6 ways
3 _ 5 _ 6 _
6 ways
3 _ _ 5 6 _
4 ways
ways
If the first number is
, ....
2 6 _ _ _ _
24 ways
2 _ 6 _ _ _
18 ways
2 3 _ 6 _ _
4 ways
2 4 _ 6 _ _
4 ways
2 4 _ 6 _ _
6 ways
2 5 _ 6 _ _
6 ways
2 5 _ _ 6 _
6 ways
2 _ 5 _ 6 _
4 ways
2 4 _ 5 6 _
2 ways
2 3 4 5 6 1
1 way
ways
Grand Total :
Solution 2
If
is the first number, then there are no restrictions. There are
, or
ways to place the other
numbers.
If
is the second number, then the first number can be
, and there are
ways to place the other
numbers.
ways.
If
is the third number, then we cannot have the following:
1 _ 6 _ _ _
24 ways
2 1 6 _ _ _
6 ways
ways
If
is the fourth number, then we cannot have the following:
1 _ _ 6 _ _
24 ways
2 1 _ 6 _ _
6 ways
2 3 1 6 _ _
2 ways
3 1 2 6 _ _
2 ways
3 2 1 6 _ _
2 ways
ways
If
is the fifth number, then we cannot have the following:
_ _ _ _ 6 5
24 ways
1 5 _ _ 6 _
6 ways
1 _ 5 _ 6 _
6 ways
2 1 5 _ 6 _
2 ways
1 _ _ 5 6 _
6 ways
2 1 _ 5 6 _
2 ways
2 3 1 5 6 4, 3 1 2 5 6 4, 3 2 1 5 6 4
3 ways
ways
Grand Total :