Art of Problem Solving

2010 AMC 8 Problems/Problem 23: Difference between revisions

Line 17: Line 17:
<math>(\sqrt{2})^2\pi = 2\pi </math>
<math>(\sqrt{2})^2\pi = 2\pi </math>


Using the coordinate plane given we find that the radius of the two semicircles to be 1. Therefore the area of the two semicircles is
Using the coordinate plane given we find that the radius of the two semicircles to be 1. Therefore the area of the two semicircles is:


<math>1^2\pi=\pi</math>
<math>1^2\pi=\pi</math>

Revision as of 22:08, 14 October 2015

Problem

Semicircles $POQ$ and $ROS$ pass through the center $O$. What is the ratio of the combined areas of the two semicircles to the area of circle $O$? [asy] import graph; size(7.5cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-6.27,xmax=10.01,ymin=-5.65,ymax=10.98; draw(circle((0,0),2)); draw((-3,0)--(3,0),EndArrow(6)); draw((0,-3)--(0,3),EndArrow(6)); draw(shift((0.01,1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,179.76,359.76)); draw(shift((-0.01,-1.42))*xscale(1.41)*yscale(1.41)*arc((0,0),1,-0.38,179.62)); draw((-1.4,1.43)--(1.41,1.41)); draw((-1.42,-1.41)--(1.4,-1.42)); label("$ P(-1,1) $",(-2.57,2.17),SE*lsf); label("$ Q(1,1) $",(1.55,2.21),SE*lsf); label("$ R(-1,1) $",(-2.72,-1.45),SE*lsf); label("$S(1,-1)$",(1.59,-1.49),SE*lsf);  dot((0,0),ds); label("$O$",(-0.24,-0.35),NE*lsf); dot((1.41,1.41),ds); dot((-1.4,1.43),ds); dot((1.4,-1.42),ds); dot((-1.42,-1.41),ds);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy] $\textbf{(A)}\ \frac{\sqrt 2}{4}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ \frac{2}{\pi}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{\sqrt 2}{2}$


Solution

According to the pythagorean theorem, The radius of the larger circle is:

$1^2 + 1^2 = \sqrt{2}$

Therefore the area of the larger circle is:

$(\sqrt{2})^2\pi = 2\pi$

Using the coordinate plane given we find that the radius of the two semicircles to be 1. Therefore the area of the two semicircles is:

$1^2\pi=\pi$

Finally the ratio of the combined areas of the two semicircles to the area of circle $O$ is $\boxed{\textbf{(B)}\ \frac{1}{2}}$.

See Also

2010 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing