2006 IMO Problems/Problem 1: Difference between revisions
No edit summary |
Mengsay loem (talk | contribs) |
||
| Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
. | We have angle(IBP)= angle(IBC) - angle(PBC)=1/2 angle(ABC) - angle(PBC)=1/2 [ angle(PBA) - angle(PBC)] (1) | ||
and similarly angle(ICP)=angle(PCB) - angle(ICB) = angle(PCB) - 1/2 angle(ACB)= 1/2[ angle(PCB) - angle(PCA)] (2) | |||
since angle(PBA)+angle(PCA)=angle(PBC)+angle(PCB) , then angle(PBA) - angle(PBC) = angle(PCB) - angle(PCA) (3) | |||
(1) , (2) and (3) therefore : angle(IBP)=angle(ICP) i.e BIPC is con cyclic . | |||
Let J be a point of intersection between (AI) and the circumcise of triangle ABC , then IJB is isosceles traingle because of angle(BIJ)=angle(IBJ) | |||
so JB=JC=JI , then JI=JP (because BIPC con cyclic) . | |||
In triangle APJ : AP+JP >= AJ=AI+IJ but JI=JP so AP >= AI . | |||
Revision as of 22:54, 13 May 2015
Problem
Let
be triangle with incenter
. A point
in the interior of the triangle satisfies
. Show that
, and that equality holds if and only if
Solution
We have angle(IBP)= angle(IBC) - angle(PBC)=1/2 angle(ABC) - angle(PBC)=1/2 [ angle(PBA) - angle(PBC)] (1) and similarly angle(ICP)=angle(PCB) - angle(ICB) = angle(PCB) - 1/2 angle(ACB)= 1/2[ angle(PCB) - angle(PCA)] (2) since angle(PBA)+angle(PCA)=angle(PBC)+angle(PCB) , then angle(PBA) - angle(PBC) = angle(PCB) - angle(PCA) (3) (1) , (2) and (3) therefore : angle(IBP)=angle(ICP) i.e BIPC is con cyclic . Let J be a point of intersection between (AI) and the circumcise of triangle ABC , then IJB is isosceles traingle because of angle(BIJ)=angle(IBJ) so JB=JC=JI , then JI=JP (because BIPC con cyclic) .
In triangle APJ : AP+JP >= AJ=AI+IJ but JI=JP so AP >= AI .