1996 USAMO Problems/Problem 1: Difference between revisions
Zhuangzhuang (talk | contribs) Created page with "First, as <math>180\sin{180^\circ}=0,</math> we omit that term. Now, we multiply by <math>\sin 1^\circ</math> to get, after using product to sum, <math>(\cos 1^\circ-\cos 3^\circ..." |
Zhuangzhuang (talk | contribs) No edit summary |
||
| Line 1: | Line 1: | ||
'''Problem''' | |||
---- | |||
'''Solution:''' | |||
---- | |||
First, as <math>180\sin{180^\circ}=0,</math> we omit that term. Now, we multiply by <math>\sin 1^\circ</math> to get, after using product to sum, <math>(\cos 1^\circ-\cos 3^\circ+2(\cos 3^\circ-\cos5)+\cdots +89(\cos 177^\circ-\cos 179^\circ)</math>. | First, as <math>180\sin{180^\circ}=0,</math> we omit that term. Now, we multiply by <math>\sin 1^\circ</math> to get, after using product to sum, <math>(\cos 1^\circ-\cos 3^\circ+2(\cos 3^\circ-\cos5)+\cdots +89(\cos 177^\circ-\cos 179^\circ)</math>. | ||
This simplifies to <math>90\cos 1^\circ+\cos 3^\circ +\cos 5^\circ+\cos 7^\circ+...+\cos 177^\circ</math>. Since <math>\cos x=-\cos(180-x),</math> this simplifies to <math>90\cos 1^\circ</math>. We multiplied by <math>\sin 1^\circ</math> in the beginning, so we must divide by it now, and thus the sum is just <math>90\cot 1^\circ</math>, so the average is <math>\cot 1^\circ</math>, as desired. | This simplifies to <math>90\cos 1^\circ+\cos 3^\circ +\cos 5^\circ+\cos 7^\circ+...+\cos 177^\circ</math>. Since <math>\cos x=-\cos(180-x),</math> this simplifies to <math>90\cos 1^\circ</math>. We multiplied by <math>\sin 1^\circ</math> in the beginning, so we must divide by it now, and thus the sum is just <math>90\cot 1^\circ</math>, so the average is <math>\cot 1^\circ</math>, as desired. | ||
<math>\Box</math> | <math>\Box</math> | ||
Revision as of 20:48, 4 November 2012
Problem
Solution:
First, as
we omit that term. Now, we multiply by
to get, after using product to sum,
.
This simplifies to
. Since
this simplifies to
. We multiplied by
in the beginning, so we must divide by it now, and thus the sum is just
, so the average is
, as desired.