Art of Problem Solving

2009 AMC 8 Problems/Problem 12: Difference between revisions

Mrdavid445 (talk | contribs)
Created page with "==Problem== The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime? <..."
 
Mrdavid445 (talk | contribs)
No edit summary
Line 1: Line 1:
==Problem==
==Problem==
The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?
The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?
<asy>unitsize(30);  
 
<asy>
unitsize(30);  
draw(unitcircle);
draw(unitcircle);
draw((0,0)--(0,-1));
draw((0,0)--(0,-1));

Revision as of 12:24, 14 August 2011

Problem

The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?

[asy] unitsize(30);  draw(unitcircle); draw((0,0)--(0,-1)); draw((0,0)--(cos(pi/6),sin(pi/6))); draw((0,0)--(-cos(pi/6),sin(pi/6))); label("$1$",(0,.5)); label("$3$",((cos(pi/6))/2,(-sin(pi/6))/2)); label("$5$",(-(cos(pi/6))/2,(-sin(pi/6))/2));[/asy] [asy]unitsize(30);  draw(unitcircle); draw((0,0)--(0,-1)); draw((0,0)--(cos(pi/6),sin(pi/6))); draw((0,0)--(-cos(pi/6),sin(pi/6))); label("$2$",(0,.5)); label("$4$",((cos(pi/6))/2,(-sin(pi/6))/2)); label("$6$",(-(cos(pi/6))/2,(-sin(pi/6))/2));[/asy]

$\textbf{(A)}\ \frac {1}{2} \qquad \textbf{(B)}\ \frac {2}{3} \qquad \textbf{(C)}\ \frac {3}{4} \qquad \textbf{(D)}\ \frac {7}{9} \qquad \textbf{(E)}\ \frac {5}{6}$