2023 WSMO Accuracy Round Problems/Problem 6: Difference between revisions
No edit summary |
No edit summary |
||
| Line 46: | Line 46: | ||
draw(k--l--m--n--cycle,green); | draw(k--l--m--n--cycle,green); | ||
</asy> | </asy> | ||
The existence of point <math>O</math> implies that <math>ABCD</math> is a cyclic quadrilateral. Now, we have | |||
<cmath>\begin{align*} | |||
\angle(AXB) &= 180-\angle(AXD)\\ | |||
&= 180-(180-\angle(XAD)-\angle(XDA))\\ | |||
&= \angle(XAD)+\angle(XDA) | |||
&= \angle(CAD)+\angle(BDA)\\ | |||
&= \frac{\overparen{CD}}{2}+\frac{\overparen{AB}}{2}\\ | |||
&= \frac{\angle(COD)}{2}+\frac{\angle(AOB)}{2}\\ | |||
&= \frac{120}{2} = 60^{\circ}. | |||
\end{align*}</cmath> | |||
So, | |||
<cmath>\begin{align*} | |||
KM &= KX+XM\\ | |||
&= AX\cos60^{\circ}+XC\cos^{\circ}\\ | |||
&= \frac{AX}{2}+\frac{XC}{2}\\ | |||
&= \frac{AC}{2}. | |||
\end{align*}</cmath> | |||
In the same manner, we have <math>LN = \frac{BD}{2}.</math> We have | |||
<cmath>\begin{align*} | |||
[KLMN] &= \frac{1}{2}(KM)(LN)\sin\angle(LXK)\\ | |||
&= \frac{1}{2}\left(\frac{AC}{2}\right)\left(\frac{BD}{2}\right)\sin\angle(AXB)\\ | |||
&= \frac{1}{4}\left(\frac{1}{2}(AC)(BD)\sin\angle(AXB)\right)\\ | |||
&= \frac{[ABCD]}{4}\implies\\ | |||
[KLMN] &= \frac{20}{4} = 5\implies\\ | |||
([KLMN]) &= 5^2 = \boxed{25}. | |||
\end{align*}</cmath> | |||
Revision as of 12:38, 13 September 2025
Problem
In quadrilateral
there exists a point
such that
and
Let
be the foot of the perpendiculars from
to
to
to
and
to
If
find
Solution
The existence of point
implies that
is a cyclic quadrilateral. Now, we have
\begin{align*}
\angle(AXB) &= 180-\angle(AXD)\\
&= 180-(180-\angle(XAD)-\angle(XDA))\\
&= \angle(XAD)+\angle(XDA)
&= \angle(CAD)+\angle(BDA)\\
&= \frac{\overparen{CD}}{2}+\frac{\overparen{AB}}{2}\\
&= \frac{\angle(COD)}{2}+\frac{\angle(AOB)}{2}\\
&= \frac{120}{2} = 60^{\circ}.
\end{align*} (Error compiling LaTeX. Unknown error_msg)
So,
In the same manner, we have
We have