2023 SSMO Relay Round 1 Problems/Problem 3: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>T=TNYWR</math>. Find the number of solutions to the equation | Let <math>T=TNYWR</math>. Find the number of solutions to the equation | ||
<cmath>\sec^{ | <cmath>\sec^{T} (Tx) - \tan^{T}(Tx) = 1</cmath> | ||
such <math>0 \le x \le \pi</math> | such <math>0 \le x \le \pi</math> | ||
==Solution== | ==Solution== | ||
We have <math>T = 2022</math>. Let | |||
<cmath>\begin{align*} | |||
S = \sum_{i=0}^\infty a_i &= a_0+a_1+a_2+\sum_{i=3}^\infty a_i\\ | |||
&= 0+1+2022+\sum_{i=3}^\infty \left(a_{i-1}-\frac{a_{i-3}}{8}\right)\\ | |||
&= 2023+\sum_{i=3}^{\infty}a_{i-1}-\sum_{i=3}^\infty\frac{a_{i-3}}{8}\\ | |||
&= 2023+\sum_{i=2}^\infty a_i-\frac{\sum_{i=0}a_i}{8}\\ | |||
&= 2023+\left(\sum_{i=0}^\infty a_i-a_0-a_1\right)-\frac{S}{8}\\ | |||
&= 2023+(S-0-1)-\frac{S}{8}\\ | |||
&= 2022+\frac{7S}{8}.\\ | |||
\end{align*}</cmath> | |||
We have | |||
<cmath>\begin{align*} | |||
S &= 2022+\frac{7S}{8}\implies\\ | |||
\frac{S}{8} &= 2022\implies\\ | |||
S &= 8\cdot2022 = \boxed{16176}. | |||
\end{align*}</cmath> | |||
~pinkpig | |||
Revision as of 10:23, 15 September 2025
Problem
Let
. Find the number of solutions to the equation
such
Solution
We have
. Let
We have
~pinkpig