Art of Problem Solving

Multinomial Theorem: Difference between revisions

1=2 (talk | contribs)
No edit summary
Temperal (talk | contribs)
Problem
Line 7: Line 7:
<math>\binom{n}{k_1,k_2,\cdots,k_x}=\dfrac{n!}{k_1!k_2!\cdots k_x!}</math>
<math>\binom{n}{k_1,k_2,\cdots,k_x}=\dfrac{n!}{k_1!k_2!\cdots k_x!}</math>


==Problems==
===Introductory===
===Intermediate===
*The expression


== Intermediate Problems ==
<math>(x+y+z)^{2006}+(x-y-z)^{2006}</math>


* [[2006_AMC_12A_Problems/Problem_24 | 2006 AMC 12A Problem 24]]
is simplified by expanding it and combining like terms. How many terms are in the simplified expression?
 
<math> \mathrm{(A) \ } 6018\qquad \mathrm{(B) \ } 671,676\qquad \mathrm{(C) \ } 1,007,514</math><math>\mathrm{(D) \ } 1,008,016\qquad\mathrm{(E) \ }  2,015,028</math>
 
-([[2006_AMC_12A_Problems/Problem_24|2006 AMC 12A Problem 24]])
===Olympiad===




{{stub}}
{{stub}}

Revision as of 20:54, 24 September 2007

The multinomial theorem states that

$(a_1+a_2+\cdots+a_x)^n=\sum_{k_1,k_2,\cdots,k_x}\binom{n}{k_1,k_2,\cdots,k_x}a_1^{k_1}a_2^{k_2}\cdots a_x^{k_x}$

where

$\binom{n}{k_1,k_2,\cdots,k_x}=\dfrac{n!}{k_1!k_2!\cdots k_x!}$

Problems

Introductory

Intermediate

  • The expression

$(x+y+z)^{2006}+(x-y-z)^{2006}$

is simplified by expanding it and combining like terms. How many terms are in the simplified expression?

$\mathrm{(A) \ } 6018\qquad \mathrm{(B) \ } 671,676\qquad \mathrm{(C) \ } 1,007,514$$\mathrm{(D) \ } 1,008,016\qquad\mathrm{(E) \ }  2,015,028$

-(2006 AMC 12A Problem 24)

Olympiad

This article is a stub. Help us out by expanding it.