2004 AMC 12B Problems/Problem 12: Difference between revisions
m →Problem |
|||
| Line 8: | Line 8: | ||
<math> \mathrm{(A) \ } -2004 \qquad \mathrm{(B) \ } -2 \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } 4003 \qquad \mathrm{(E) \ } 6007 </math> | <math> \mathrm{(A) \ } -2004 \qquad \mathrm{(B) \ } -2 \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } 4003 \qquad \mathrm{(E) \ } 6007 </math> | ||
== Solution 1 == | |||
We already know that <math>a_1=2001</math>, <math>a_2=2002</math>, <math>a_3=2003</math>, and <math>a_4=2000</math>. Let's compute the next few terms to get the idea how the sequence behaves. We get <math>a_5 = 2002+2003-2000 = 2005</math>, <math>a_6=2003+2000-2005=1998</math>, <math>a_7=2000+2005-1998=2007</math>, and so on. | We already know that <math>a_1=2001</math>, <math>a_2=2002</math>, <math>a_3=2003</math>, and <math>a_4=2000</math>. Let's compute the next few terms to get the idea how the sequence behaves. We get <math>a_5 = 2002+2003-2000 = 2005</math>, <math>a_6=2003+2000-2005=1998</math>, <math>a_7=2000+2005-1998=2007</math>, and so on. | ||
| Line 14: | Line 14: | ||
We can now discover the following pattern: <math>a_{2k+1} = 2001+2k</math> and <math>a_{2k}=2004-2k</math>. This is easily proved by induction. It follows that <math>a_{2004}=a_{2\cdot 1002} = 2004 - 2\cdot 1002 = \boxed{0}</math>. | We can now discover the following pattern: <math>a_{2k+1} = 2001+2k</math> and <math>a_{2k}=2004-2k</math>. This is easily proved by induction. It follows that <math>a_{2004}=a_{2\cdot 1002} = 2004 - 2\cdot 1002 = \boxed{0}</math>. | ||
== Solution 2 == | |||
Note that the recurrence <math>a_n+a_{n+1}-a_{n+2}~=~a_{n+3}</math> can be rewritten as <math>a_n+a_{n+1} ~=~ a_{n+2}+a_{n+3}</math>. | Note that the recurrence <math>a_n+a_{n+1}-a_{n+2}~=~a_{n+3}</math> can be rewritten as <math>a_n+a_{n+1} ~=~ a_{n+2}+a_{n+3}</math>. | ||
| Line 29: | Line 29: | ||
Following this pattern, we get <math>a_{2004} = a_{2002} - 2 = a_{2000} - 4 = \cdots = a_2 - 2002 = \boxed{0}</math>. | Following this pattern, we get <math>a_{2004} = a_{2002} - 2 = a_{2000} - 4 = \cdots = a_2 - 2002 = \boxed{0}</math>. | ||
== Solution 3 == | |||
Our recurrence is <math>a_n+a_{n+1}-a_{n+2}~=~a_{n+3}</math>, so we get <math>r^3+r^2-r-1 = 1</math>, so <math>(r-1)(r+1)^2 = 1</math>, so our formula for the recurrence is <math>a_n = A + (B + Cn)(-1)^n</math>. | Our recurrence is <math>a_n+a_{n+1}-a_{n+2}~=~a_{n+3}</math>, so we get <math>r^3+r^2-r-1 = 1</math>, so <math>(r-1)(r+1)^2 = 1</math>, so our formula for the recurrence is <math>a_n = A + (B + Cn)(-1)^n</math>. | ||
Revision as of 10:41, 13 October 2021
- The following problem is from both the 2004 AMC 12B #12 and 2004 AMC 10B #19, so both problems redirect to this page.
Problem
In the sequence
,
,
,
, each term after the third is found by subtracting the previous term from the sum of the two terms that precede that term. For example, the fourth term is
. What is the
term in this sequence?
Solution 1
We already know that
,
,
, and
. Let's compute the next few terms to get the idea how the sequence behaves. We get
,
,
, and so on.
We can now discover the following pattern:
and
. This is easily proved by induction. It follows that
.
Solution 2
Note that the recurrence
can be rewritten as
.
Hence we get that
and also
From the values given in the problem statement we see that
.
From
we get that
.
From
we get that
.
Following this pattern, we get
.
Solution 3
Our recurrence is
, so we get
, so
, so our formula for the recurrence is
.
Substituting our starting values gives us
.
So,
~ ilovepizza2020
See also
| 2004 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 11 |
Followed by Problem 13 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
| 2004 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 18 |
Followed by Problem 20 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing