2018 AMC 8 Problems/Problem 22: Difference between revisions
Mathisdecent (talk | contribs) |
|||
| Line 19: | Line 19: | ||
Let the area of <math>\triangle CEF</math> be <math>x</math>. Thus, the area of triangle <math>\triangle ACD</math> is <math>45+x</math> and the area of the square is <math>2(45+x) = 90+2x</math>. | Let the area of <math>\triangle CEF</math> be <math>x</math>. Thus, the area of triangle <math>\triangle ACD</math> is <math>45+x</math> and the area of the square is <math>2(45+x) = 90+2x</math>. | ||
By | By AA similarity, <math>\triangle CEF \sim \triangle ABF</math> with a 1:2 ratio, so the area of triangle <math>\triangle ABF</math> is <math>4x</math>. Now consider trapezoid <math>ABED</math>. Its area is <math>45+4x</math>, which is three-fourths the area of the square. We set up an equation in <math>x</math>: | ||
<cmath> 45+4x = \frac{3}{4}\left(90+2x\right) </cmath> | <cmath> 45+4x = \frac{3}{4}\left(90+2x\right) </cmath> | ||
Solving, we get <math>x = 9</math>. The area of square <math>ABCD</math> is <math>90+2x = 90 + 2 \cdot 9 = \boxed{\textbf{(B)} 108}</math>. | Solving, we get <math>x = 9</math>. The area of square <math>ABCD</math> is <math>90+2x = 90 + 2 \cdot 9 = \boxed{\textbf{(B)} 108}</math>. | ||
==Solution 2== | ==Solution 2== | ||
Revision as of 13:51, 15 July 2019
Problem 22
Point
is the midpoint of side
in square
and
meets diagonal
at
The area of quadrilateral
is
What is the area of
Solution 1
Let the area of
be
. Thus, the area of triangle
is
and the area of the square is
.
By AA similarity,
with a 1:2 ratio, so the area of triangle
is
. Now consider trapezoid
. Its area is
, which is three-fourths the area of the square. We set up an equation in
:
Solving, we get
. The area of square
is
.
Solution 2
We can use analytic geometry for this problem.
Let us start by giving
the coordinate
,
the coordinate
, and so forth.
and
can be represented by the equations
and
, respectively. Solving for their intersection gives point
coordinates
.
Now, ![]()
’s area is simply
or
. This means that pentagon
’s area is
of the entire square, and it follows that quadrilateral
’s area is
of the square.
The area of the square is then
.
See Also
| 2018 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 21 |
Followed by Problem 23 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
Set s to be the bottom left triangle. These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing