2019 AMC 12B Problems/Problem 25: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>ABCD</math> be a convex quadrilateral with <math>BC=2</math> and <math>CD=6.</math> Suppose that the centroids of <math>\triangle ABC,\triangle BCD,</math> and <math>\triangle ACD</math> form the vertices of an equilateral triangle. What is the maximum possible value of <math>ABCD</math>? | |||
<math>\textbf{(A) } 27 \qquad\textbf{(B) } 16\sqrt3 \qquad\textbf{(C) } 12+10\sqrt3 \qquad\textbf{(D) } 9+12\sqrt3 \qquad\textbf{(E) } 30</math> | |||
==Solution== | ==Solution== | ||
| Line 5: | Line 9: | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2019|ab=B|num-b=24|after=Last Problem}} | {{AMC12 box|year=2019|ab=B|num-b=24|after=Last Problem}} | ||
{{MAA Notice}} | |||
Revision as of 12:23, 14 February 2019
Problem
Let
be a convex quadrilateral with
and
Suppose that the centroids of
and
form the vertices of an equilateral triangle. What is the maximum possible value of
?
Solution
See Also
| 2019 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 24 |
Followed by Last Problem |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing