2004 AMC 8 Problems/Problem 5: Difference between revisions
No edit summary |
Brackie. . (talk | contribs) |
||
| (4 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
The losing team of each game is eliminated from the tournament. If sixteen teams compete, how many games will be played to determine the winner? | Ms. Hamilton's eighth-grade class wants to participate in the annual three-person-team basketball tournament. The losing team of each game is eliminated from the tournament. If sixteen teams compete, how many games will be played to determine the winner? | ||
<math> \textbf{(A)}\ 4\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 16 </math> | <math> \textbf{(A)}\ 4\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 16 </math> | ||
==Solution 1== | |||
Note that the winning team will the be the only team that wins all of the games. Therefore, to find the total number of games to determine the winner has a 1:1 correspondence to the number of ways to determine the losers. ( Think of it this way: If you want to select two balls from a bag of 6 balls, it is analogous to selecting the 4 balls that you don't want to select, both are 6 choose 2.). There are 15 losing teams, and since each round is unique, there are 15 total rounds. | |||
~Brackie1331 | |||
==Solution 2== | |||
There will be <math>8</math> games the first round, <math>4</math> games the second round, <math>2</math> games the third round, and <math>1</math> game in the final round, giving us a total of <math>8+4+2+1=15</math> games. <math>\boxed{\textbf{(D)}\ 15}</math>. | There will be <math>8</math> games the first round, <math>4</math> games the second round, <math>2</math> games the third round, and <math>1</math> game in the final round, giving us a total of <math>8+4+2+1=15</math> games. <math>\boxed{\textbf{(D)}\ 15}</math>. | ||
Latest revision as of 09:37, 16 May 2024
Problem
Ms. Hamilton's eighth-grade class wants to participate in the annual three-person-team basketball tournament. The losing team of each game is eliminated from the tournament. If sixteen teams compete, how many games will be played to determine the winner?
Solution 1
Note that the winning team will the be the only team that wins all of the games. Therefore, to find the total number of games to determine the winner has a 1:1 correspondence to the number of ways to determine the losers. ( Think of it this way: If you want to select two balls from a bag of 6 balls, it is analogous to selecting the 4 balls that you don't want to select, both are 6 choose 2.). There are 15 losing teams, and since each round is unique, there are 15 total rounds.
~Brackie1331
Solution 2
There will be
games the first round,
games the second round,
games the third round, and
game in the final round, giving us a total of
games.
.
See Also
| 2004 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing