2001 AMC 8 Problems/Problem 12: Difference between revisions
| (4 intermediate revisions by 3 users not shown) | |||
| Line 5: | Line 5: | ||
<math>\text{(A)}\ 4 \qquad \text{(B)}\ 13 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 30 \qquad \text{(E)}\ 72</math> | <math>\text{(A)}\ 4 \qquad \text{(B)}\ 13 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 30 \qquad \text{(E)}\ 72</math> | ||
==Solution== | ==Solution 1== | ||
<math> 6\otimes4=\frac{6+4}{6-4}=5 </math>. | <math> 6\otimes4=\frac{6+4}{6-4}=\frac{10}{2}=5 </math>. | ||
<math> 5\otimes3=\frac{5+3}{5-3}=4, \boxed{\text{A}} </math> | <math> 5\otimes3=\frac{5+3}{5-3}=\frac{8}{2}=\boxed{\textbf{(A)}\ 4} </math> | ||
==Solution 2 (Overkill)== | |||
When you expand the general form of <math>(a\otimes b)\otimes c</math>, you get <cmath>(a\otimes b)\otimes c = \dfrac{a\otimes b + c}{a\otimes b - c}</cmath> | |||
<cmath> (a\otimes b)\otimes c = \dfrac{\dfrac{a + b}{a - b} + c}{\dfrac{a + b}{a - b} - c} </cmath> | |||
<cmath> (a\otimes b)\otimes c = \dfrac{\dfrac{a + b + ac - bc}{a - b}}{\dfrac{a + b - ac + bc}{a - b}} </cmath> | |||
<cmath> (a\otimes b)\otimes c = \dfrac{a + b + ac -bc}{a + b - ac + bc} </cmath> | |||
Now, substituting <math>a=6</math>, <math>b=4</math>, and <math>c=3</math>: | |||
<cmath> (6\otimes 4)\otimes 3 = \dfrac{6 + 4 + 18 - 12}{6 + 4 - 18 + 12} </cmath> | |||
<cmath> (6\otimes 4)\otimes 3 = \dfrac{16}{4} </cmath> | |||
<cmath> (6\otimes 4)\otimes 3 = 4 </cmath> | |||
<math>\boxed{\text {(A)}}</math> | |||
~megaboy6679 | |||
==Video Solution-Cooler Method== | ==Video Solution-Cooler Method== | ||
Latest revision as of 13:10, 22 December 2024
Problem
If
, then
Solution 1
.
Solution 2 (Overkill)
When you expand the general form of
, you get
Now, substituting
,
, and
:
~megaboy6679
Video Solution-Cooler Method
https://www.youtube.com/watch?v=ZfwtAiH_6PI&t=36s
See Also
| 2001 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 11 |
Followed by Problem 13 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing