2023 SSMO Relay Round 1 Problems/Problem 2: Difference between revisions
Created page with "==Problem== Let <math>T=</math> TNYWR. Let <math>a_0 = 3, a_1 = 1, a_2 = N</math>, and let <math>a_n = a_{n-1} - \frac{a_{n-3}}{8}</math>. Find <cmath>\sum_{i=0}^\infty a_i.</..." |
|||
| (2 intermediate revisions by one other user not shown) | |||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>T=</math> | Let <math>T=TNYWR</math>. Let <math>a_0 = 3, a_1 = 1, a_2 = T</math>, and let <math>a_n = a_{n-1} - \frac{a_{n-3}}{8}</math> for <math>n\ge 3.</math> Find <cmath>\sum_{i=0}^\infty a_i.</cmath> | ||
==Solution== | ==Solution== | ||
We have <math>T = 2022</math>. Let | |||
<cmath>\begin{align*} | |||
S = \sum_{i=0}^\infty a_i &= a_0+a_1+a_2+\sum_{i=3}^\infty a_i\\ | |||
&= 3+1+2022+\sum_{i=3}^\infty \left(a_{i-1}-\frac{a_{i-3}}{8}\right)\\ | |||
&= 2026+\sum_{i=3}^{\infty}a_{i-1}-\sum_{i=3}^\infty \frac{a_{i-3}}{8}\\ | |||
&= 2026+\sum_{i=2}^\infty a_i-\frac{\sum_{i=0}a_i}{8}\\ | |||
&= 2026+\left(\left[ \sum_{i=0}^\infty a_i \right]-a_0-a_1\right)-\frac{S}{8}\\ | |||
&= 2026+(S-3-1)-\frac{S}{8}\\ | |||
&= 2022+\frac{7S}{8}.\\ | |||
\end{align*}</cmath> | |||
We have | |||
<cmath>\begin{align*} | |||
S &= 2022+\frac{7S}{8}\implies\\ | |||
\frac{S}{8} &= 2022\implies\\ | |||
S &= 8\cdot2022 = \boxed{16176}. | |||
\end{align*}</cmath> | |||
~pinkpig | |||
Latest revision as of 16:15, 15 September 2025
Problem
Let
. Let
, and let
for
Find
Solution
We have
. Let
We have
~pinkpig