2008 AMC 8 Problems/Problem 17: Difference between revisions
Sootommylee (talk | contribs) No edit summary |
Undo revision 230657 by Daniel.en.qin (talk) Tag: Undo |
| (One intermediate revision by one other user not shown) | |
(No difference)
| |
Latest revision as of 19:59, 27 October 2024
Problem
Ms.Osborne asks each student in her class to draw a rectangle with integer side lengths and a perimeter of
units. All of her students calculate the area of the rectangle they draw. What is the difference between the largest and smallest possible areas of the rectangles?
Solution
A rectangle's area is maximized when its length and width are equivalent, or the two side lengths are closest together in this case with integer lengths. This occurs with the sides
. Likewise, the area is smallest when the side lengths have the greatest difference, which is
. The difference in area is
.
Video Solution
https://youtu.be/9bVwSsWa8IY Soo, DRMS, NM
See Also
| 2008 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 16 |
Followed by Problem 18 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing