Multinomial Theorem: Difference between revisions
No edit summary |
No edit summary |
||
| (21 intermediate revisions by 14 users not shown) | |||
| Line 1: | Line 1: | ||
The | The '''Multinomial Theorem''' states that | ||
<cmath> | |||
(a_1+a_2+\cdots+a_k)^n=\sum_{\substack{j_1,j_2,\ldots,j_k \\ 0 \leq j_i \leq n \textrm{ for each } i \\ | |||
\textrm{and } j_1 + \ldots + j_k = n}}\binom{n}{j_1; j_2; \ldots ; j_k}a_1^{j_1}a_2^{j_2}\cdots a_k^{j_k} | |||
</cmath> | |||
where <math>\binom{n}{j_1; j_2; \ldots ; j_k}</math> is the [[multinomial coefficient]] <math>\binom{n}{j_1; j_2; \ldots ; j_k}=\dfrac{n!}{j_1!\cdot j_2!\cdots j_k!}</math>. | |||
<math>(a_1+a_2 | Note that this is a direct generalization of the [[Binomial Theorem]], when <math>k = 2</math> it simplifies to | ||
<cmath> | |||
(a_1 + a_2)^n = \sum_{\substack{0\leq j_1, j_2 \leq n \\ j_1 + j_2 = n}} \binom{n}{j_1; j_2} a_1^{j_1}a_2^{j_2} = \sum_{j = 0}^n \binom{n}{j} a_1^j a_2^{n - j} | |||
</cmath> | |||
== Proof == | |||
===Proof by Induction=== | |||
Proving the Multinomial Theorem by Induction | |||
<math>\binom{n}{ | For a positive integer <math>k</math> and a non-negative integer <math>n</math>, | ||
<cmath>(x_1 + x_2 + x_3 + ... + x_{k-1} + x_k)^n = \sum_{b_1 + b_2 + b_3 + ... + b_{k-1} + b_k= n}{\binom{n}{b_1, b_2, b_3, ..., b_{k-1}, b_k} \prod_{j=1}^{k}{x_j^{b_j}}}</cmath> | |||
<math>\bf Proof:</math> | |||
When <math>k=1</math> the result is true, and when <math>k=2</math> the result is the binomial theorem. Assume that <math>k \ge 3</math> and that the result is true for <math>k=p</math> When <math>k=p+1</math> | |||
<cmath>(x_1 + x_2 + x_3 + ... + x_{p-1} + x_p)^n = (x_1 + x_2 + x_3 + ... + x_{p-1} + (x_p +x_{p+1})^n</cmath> | |||
Treating <math>x_p + x_{p+1}</math> as a single term and using the induction hypothesis: | |||
<cmath>\sum_{b_1 + b_2 + b_3 + ... + b_{p-1} + B = n}{\binom{n}{b_1, b_2, b_3, ..., b_{p-1}, B} \cdot (x_p + x_{p+1})^B \cdot \prod_{j=1}^{p-1}{x_j^{b_j}}}</cmath> | |||
By the Binomial Theorem, this becomes: | |||
<cmath>\sum_{b_1 + b_2 + b_3 + ... + b_{p-1} + B = n}{\binom{n}{b_1, b_2, b_3, ..., b_{p-1}, B}} (\prod_{j=1}^{p-1}{x_j^{b_j}}) \cdot \sum_{b_p + b_{p+1} = B}{\binom{B}{b_p} \cdot x_p^{b_p} x_{p+1}^{b_{p+1}}}</cmath> | |||
Since <math>\binom{n}{b_1, b_2, b_3, ... ,b_p, B}\binom{B}{b_p} = \binom{n}{b_1, b_2, b_3, ... ,b_p, b_{p+1}}</math>, this can be rewritten as: | |||
<cmath>\sum_{b_1 + b_2 + ... b_p + b_{p+1}= n}{\binom{n}{b_1, b_2, b_3, ..., b_p, b_{p+1}}\prod_{j=1}^{k}{x_j^{b_j}}}</cmath> | |||
== | === Combinatorial proof === | ||
{{stub}} | |||
* [[ | ==Problems== | ||
===Intermediate=== | |||
*The [[expression]] | |||
<math>(x+y+z)^{2006}+(x-y-z)^{2006}</math> | |||
{{ | is simplified by expanding it and combining like terms. How many terms are in the simplified expression? | ||
<math> \mathrm{(A) \ } 6018\qquad \mathrm{(B) \ } 671,676\qquad \mathrm{(C) \ } 1,007,514\qquad \mathrm{(D) \ } 1,008,016\qquad\mathrm{(E) \ } 2,015,028</math> | |||
(Source: [[2006_AMC_12A_Problems/Problem_24|2006 AMC 12A Problem 24]]) | |||
===Olympiad=== | |||
[[Category:Theorems]] | |||
[[Category:Combinatorics]] | |||
Latest revision as of 17:16, 23 June 2025
The Multinomial Theorem states that
where
is the multinomial coefficient
.
Note that this is a direct generalization of the Binomial Theorem, when
it simplifies to
Proof
Proof by Induction
Proving the Multinomial Theorem by Induction
For a positive integer
and a non-negative integer
,
When
the result is true, and when
the result is the binomial theorem. Assume that
and that the result is true for
When
Treating
as a single term and using the induction hypothesis:
By the Binomial Theorem, this becomes:
Since
, this can be rewritten as:
Combinatorial proof
This article is a stub. Help us out by expanding it.
Problems
Intermediate
- The expression
is simplified by expanding it and combining like terms. How many terms are in the simplified expression?
(Source: 2006 AMC 12A Problem 24)