2011 AIME II Problems/Problem 2: Difference between revisions
No edit summary |
Tempaccount (talk | contribs) Remove extra problem section |
||
| (10 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
Problem | == Problem 2 == | ||
On [[square]] <math>ABCD</math>, point <math>E</math> lies on side <math>AD</math> and point <math>F</math> lies on side <math>BC</math>, so that <math>BE=EF=FD=30</math>. Find the area of the square <math>ABCD</math>. | |||
== Solution == | |||
Drawing the square and examining the given lengths, | |||
<asy> | |||
size(2inch, 2inch); | |||
currentpen = fontsize(8pt); | |||
pair A = (0, 0); dot(A); label("$A$", A, plain.SW); | |||
pair B = (3, 0); dot(B); label("$B$", B, plain.SE); | |||
pair C = (3, 3); dot(C); label("$C$", C, plain.NE); | |||
pair D = (0, 3); dot(D); label("$D$", D, plain.NW); | |||
pair E = (0, 1); dot(E); label("$E$", E, plain.W); | |||
pair F = (3, 2); dot(F); label("$F$", F, plain.E); | |||
label("$\frac x3$", E--A); | |||
label("$\frac x3$", F--C); | |||
label("$x$", A--B); | |||
label("$x$", C--D); | |||
label("$\frac {2x}3$", B--F); | |||
label("$\frac {2x}3$", D--E); | |||
label("$30$", B--E); | |||
label("$30$", F--E); | |||
label("$30$", F--D); | |||
draw(B--C--D--F--E--B--A--D); | |||
</asy> | |||
you find that the three segments cut the square into three equal horizontal sections. Therefore, (<math>x</math> being the side length), <math>\sqrt{x^2+(x/3)^2}=30</math>, or <math>x^2+(x/3)^2=900</math>. Solving for <math>x</math>, we get <math>x=9\sqrt{10}</math>, and <math>x^2=810.</math> | |||
Area of the square is <math>\fbox{810}</math>. | |||
==See also== | |||
{{AIME box|year=2011|n=II|num-b=1|num-a=3}} | |||
[[Category:Intermediate Geometry Problems]] | |||
{{MAA Notice}} | |||
Latest revision as of 16:02, 9 August 2018
Problem 2
On square
, point
lies on side
and point
lies on side
, so that
. Find the area of the square
.
Solution
Drawing the square and examining the given lengths,
you find that the three segments cut the square into three equal horizontal sections. Therefore, (
being the side length),
, or
. Solving for
, we get
, and
Area of the square is
.
See also
| 2011 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 1 |
Followed by Problem 3 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing