2007 iTest Problems/Problem 25: Difference between revisions
Created page with "== Problem == Ted's favorite number is equal to <cmath>1\cdot{2007\choose 1}+2\cdot {2007\choose 2}+3\cdot {2007\choose 3} + \cdots + 2007\cdot {2007 \choose 2007}</cmath> Find..." |
Rockmanex3 (talk | contribs) Solution to Problem 25 |
||
| Line 1: | Line 1: | ||
== Problem == | ==Problem== | ||
Ted's favorite number is equal to | Ted's favorite number is equal to | ||
<cmath>1\cdot{2007\choose 1}+2\cdot {2007\choose 2}+3\cdot {2007\choose 3} + \cdots + 2007\cdot {2007 \choose 2007}</cmath> | <cmath>1\cdot{2007\choose 1}+2\cdot {2007\choose 2}+3\cdot {2007\choose 3} + \cdots + 2007\cdot {2007 \choose 2007}</cmath> | ||
Find the remainder when | Find the remainder when Ted’s favorite number is divided by 25. | ||
<math>\text{(A) } 0\qquad | <math>\text{(A) } 0\qquad | ||
| Line 14: | Line 14: | ||
\text{(G) } 6\qquad | \text{(G) } 6\qquad | ||
\text{(H) } 7\qquad | \text{(H) } 7\qquad | ||
\text{(I) } 8\qquad | \text{(I) } 8\qquad</math> | ||
<math>\text{(J) } 9\qquad | <math>\text{(J) } 9\qquad | ||
| Line 23: | Line 23: | ||
\text{(O) } 14\qquad | \text{(O) } 14\qquad | ||
\text{(P) } 15\qquad | \text{(P) } 15\qquad | ||
\text{(Q) } 16\qquad | \text{(Q) } 16\qquad</math> | ||
<math>\text{(R) } 17\qquad | <math>\text{(R) } 17\qquad | ||
| Line 30: | Line 30: | ||
\text{(U) } 20\qquad | \text{(U) } 20\qquad | ||
\text{(V) } 21\qquad | \text{(V) } 21\qquad | ||
\text{( | \text{(W) } 22\qquad | ||
\text{(X) } 23\qquad | \text{(X) } 23\qquad | ||
\text{(Y) } 24</math> | \text{(Y) } 24</math> | ||
== Solution == | ==Solution== | ||
Let <math>T = \sum_{i=1}^{2007} i \cdot \binom{2007}{i}</math>. That means | |||
<cmath>2T = 2 \cdot \sum_{i=1}^{2007} (i \cdot \binom{2007}{i}</cmath> | |||
We know that <math>\binom{2007}{i} = \binom{2007}{2007-i}</math>, so | |||
<cmath>2T = \sum_{i=1}^{2007} (i \cdot \binom{2007}{i}) + \sum_{j=1}^{2007} (j \cdot \binom{2007}{2007-j})</cmath> | |||
If <math>2007-j= i</math>, then <math>i+j = 2007</math>, so | |||
<cmath>2T = 2007 \cdot \sum_{i=0}^{2007} \binom{2007}{i}</cmath> | |||
<cmath>2T = 2007 \cdot 2^{2007}</cmath> | |||
<cmath>T = 2007 \cdot 2^{2006}</cmath> | |||
Note that <math>2^{10} \equiv -1 \pmod{25}</math>. Using the properties of [[modular arithmetic]], we can find the remainder when <math>T</math> is divided by <math>25</math>. | |||
<cmath>T \equiv 2007 \cdot 2^{2000} \cdot 2^6 \pmod{25}</cmath> | |||
<cmath>T \equiv 2007 \cdot (2^{10})^{200} \cdot 64 \pmod{25}</cmath> | |||
<cmath>T \equiv 7 \cdot 1 \cdot 14 \pmod{25}</cmath> | |||
<cmath>T \equiv 98 \pmod{25}</cmath> | |||
<cmath>T \equiv 23 \pmod{25}</cmath> | |||
The remainder when Ted’s favorite number is divided by 25 is <math>\boxed{\textbf{(X) } 23}</math>. | |||
==See Also== | |||
{{iTest box|year=2007|num-b=24|num-a=26}} | |||
[[Category:Intermediate Number Theory Problems]] | |||
Latest revision as of 13:35, 29 July 2018
Problem
Ted's favorite number is equal to
Find the remainder when Ted’s favorite number is divided by 25.
Solution
Let
. That means
We know that
, so
If
, then
, so
Note that
. Using the properties of modular arithmetic, we can find the remainder when
is divided by
.
The remainder when Ted’s favorite number is divided by 25 is
.
See Also
| 2007 iTest (Problems, Answer Key) | ||
| Preceded by: Problem 24 |
Followed by: Problem 26 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4 | ||