Art of Problem Solving

1961 AHSME Problems/Problem 8: Difference between revisions

Nathan wailes (talk | contribs)
No edit summary
Rockmanex3 (talk | contribs)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Let the two base angles of a triangle be ''A'' and ''B'', with ''B'' larger than ''A''. The altitude to the base divides the vertex angle ''C'' into two parts, <math>C_1</math> and <math>C_2</math>, with <math>C_2</math> adjacent to side ''a''. Then:
== Problem ==


(A) <math>C_1+C_2=A+B</math>
Let the two base angles of a triangle be <math>A</math> and <math>B</math>, with <math>B</math> larger than <math>A</math>.
The altitude to the base divides the vertex angle <math>C</math> into two parts, <math>C_1</math> and <math>C_2</math>, with <math>C_2</math> adjacent to side <math>a</math>. Then:


(B) <math>C_1-C_2=B-A</math>
<math>\textbf{(A)}\ C_1+C_2=A+B \qquad
\textbf{(B)}\ C_1-C_2=B-A \qquad\\
\textbf{(C)}\ C_1-C_2=A-B \qquad
\textbf{(D)}\ C_1+C_2=B-A\qquad
\textbf{(E)}\ C_1-C_2=A+B</math>


(C) <math>C_1-C_2=A-B</math>
==Solution==


(D) <math>C_1+C_2=B-A</math>
<asy>
draw((0,0)--(120,0)--(40,50)--(0,0));
draw((40,50)--(40,0));
draw((40,4)--(44,4)--(44,0));
label("$B$",(10,5));
label("$A$",(100,5));
label("$C_1$",(47,38));
label("$C_2$",(34,33));
</asy>
 
Noting that side <math>a</math> is opposite of angle <math>A</math>, label the diagram as shown.
 
From the two right triangles,
<cmath>B + C_2 = 90</cmath>
<cmath>A + C_1 = 90</cmath>
Substitute to get
<cmath>B + C_2 = A + C_1</cmath>
<cmath>B - A = C_1 - C_2</cmath>
The answer is <math>\boxed{\textbf{(B)}}</math>.
 
==See Also==
{{AHSME 40p box|year=1961|num-b=7|num-a=9}}


(E) <math>C_1-C_2=A+B</math>
{{MAA Notice}}
{{MAA Notice}}
[[Category:Introductory Geometry Problems]]

Latest revision as of 13:36, 19 May 2018

Problem

Let the two base angles of a triangle be $A$ and $B$, with $B$ larger than $A$. The altitude to the base divides the vertex angle $C$ into two parts, $C_1$ and $C_2$, with $C_2$ adjacent to side $a$. Then:

$\textbf{(A)}\ C_1+C_2=A+B \qquad \textbf{(B)}\ C_1-C_2=B-A \qquad\\ \textbf{(C)}\ C_1-C_2=A-B \qquad \textbf{(D)}\ C_1+C_2=B-A\qquad \textbf{(E)}\ C_1-C_2=A+B$

Solution

[asy] draw((0,0)--(120,0)--(40,50)--(0,0)); draw((40,50)--(40,0)); draw((40,4)--(44,4)--(44,0)); label("$B$",(10,5)); label("$A$",(100,5)); label("$C_1$",(47,38)); label("$C_2$",(34,33)); [/asy]

Noting that side $a$ is opposite of angle $A$, label the diagram as shown.

From the two right triangles, \[B + C_2 = 90\] \[A + C_1 = 90\] Substitute to get \[B + C_2 = A + C_1\] \[B - A = C_1 - C_2\] The answer is $\boxed{\textbf{(B)}}$.

See Also

1961 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions


These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing