2022 AMC 12B Problems/Problem 16: Difference between revisions
solution added |
MRENTHUSIASM (talk | contribs) |
||
| (10 intermediate revisions by 7 users not shown) | |||
| Line 2: | Line 2: | ||
Suppose <math>x</math> and <math>y</math> are positive real numbers such that | Suppose <math>x</math> and <math>y</math> are positive real numbers such that | ||
<cmath>x^y=2^{64}\text{ and }(\log_2{x})^{\log_2{y}}=2^{7}.</cmath> | |||
< | |||
What is the greatest possible value of <math>\log_2{y}</math>? | What is the greatest possible value of <math>\log_2{y}</math>? | ||
<math>\textbf{(A) }3 \qquad \textbf{(B) }4 \qquad \textbf{(C) }3+\sqrt{2} \qquad \textbf{(D) }4+\sqrt{3} \qquad \textbf{(E) }7</math> | <math>\textbf{(A) }3 \qquad \textbf{(B) }4 \qquad \textbf{(C) }3+\sqrt{2} \qquad \textbf{(D) }4+\sqrt{3} \qquad \textbf{(E) }7</math> | ||
== Solution == | == Solution 1 == | ||
Take the base-two logarithm of both equations to get | Take the base-two logarithm of both equations to get | ||
| Line 17: | Line 15: | ||
It follows that the real numbers <math>r:=\log_2 y</math> and <math>s:=\log_2\log_2 x</math> satisfy <math>r+s=6</math> and <math>rs = 7</math>. Solving this system yields | It follows that the real numbers <math>r:=\log_2 y</math> and <math>s:=\log_2\log_2 x</math> satisfy <math>r+s=6</math> and <math>rs = 7</math>. Solving this system yields | ||
<cmath>\{\log_2 y,\log_2\log_2 x\}\in\{3-\sqrt 2, 3 + \sqrt 2\}.</cmath> | <cmath>\{\log_2 y,\log_2\log_2 x\}\in\{3-\sqrt 2, 3 + \sqrt 2\}.</cmath> | ||
Thus the largest possible value of <math>\log_2 y</math> is <math>3+\sqrt 2 \implies \boxed{\textbf {(C)}}</math>. | Thus the largest possible value of <math>\log_2 y</math> is <math>3+\sqrt 2 \implies \boxed{\textbf{(C) }3+\sqrt{2}}</math>. | ||
cr. djmathman | ~cr. djmathman | ||
== Solution 2 == | == Solution 2 == | ||
| Line 27: | Line 25: | ||
Substitution into <math>(\log_2{x})^{\log_2{y}}=2^{7}</math> yields | Substitution into <math>(\log_2{x})^{\log_2{y}}=2^{7}</math> yields | ||
<math>(\dfrac{64}{y})^{\log_2{y}}=2^{7} \Rightarrow \log_2{y}\log_2{\dfrac{64}{y}}=7 \Rightarrow \log_2{y}(6-\log_2{y})=7 \Rightarrow \log^2_2{y}-6\log_2{y}+7=0</math>. | <math>\left(\dfrac{64}{y}\right)^{\log_2{y}}=2^{7} \Rightarrow \log_2{y}\log_2{\dfrac{64}{y}}=7 \Rightarrow \log_2{y}(6-\log_2{y})=7 \Rightarrow \log^2_2{y}-6\log_2{y}+7=0</math>. | ||
Solving for <math>\log_2{y}</math> yields <math>\log_2{y}=3-\sqrt{2}</math> or <math>3+\sqrt{2}</math>, and we take the greater value <math>\boxed{\ | Solving for <math>\log_2{y}</math> yields <math>\log_2{y}=3-\sqrt{2}</math> or <math>3+\sqrt{2}</math>, and we take the greater value <math>\boxed{\textbf{(C) }3+\sqrt{2}}</math>. | ||
~4SunnyH | ~4SunnyH | ||
== Solution 3 == | |||
Let <math>x = 2^a, y = 2^b.</math> We have <math>(2^a)^{2^b} = 2^{64} \Rightarrow 2^{a\cdot 2^b} = 2^{64} \Rightarrow a\cdot 2^b = 64,</math> and <math>a^b = 128</math>. | |||
Then, from eq 1, <math>a = 64\cdot 2^{-b},</math> and substituting in to eq 2, <math>(64\cdot 2^{-b})^b = 64^b\cdot 2^{-b^2} = 2^{6b}\cdot 2^{-b^2} = 2^{6b-b^2} = 2^{7}.</math> Thus, <math>6b-b^2 = 7.</math> | |||
Solving for <math>b</math> using the quadratic formula gets <math>b = 3 \pm \sqrt{2}.</math> Since we are looking for <math>\log_2{y}</math> which equals <math>b,</math> we put <math>\boxed{\textbf{(C) }3+\sqrt{2}}</math> as our answer. | |||
~sirswagger21 | |||
==Video Solution by mop 2024== | |||
https://youtu.be/ezGvZgBLe8k&t=722s | |||
~r00tsOfUnity | |||
==Video Solution (Just 2 min!)== | |||
https://youtu.be/WU15Q_b9EDI | |||
<i>Education, the Study of Everything</i> | |||
==Video Solution(1-16)== | |||
https://youtu.be/SCwQ9jUfr0g | |||
~~Hayabusa1 | |||
== See Also == | == See Also == | ||
{{AMC12 box|year=2022|ab=B|num-b=15|num-a=17}} | {{AMC12 box|year=2022|ab=B|num-b=15|num-a=17}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 03:02, 4 November 2025
Problem
Suppose
and
are positive real numbers such that
What is the greatest possible value of
?
Solution 1
Take the base-two logarithm of both equations to get
Now taking the base-two logarithm of the first equation again yields
It follows that the real numbers
and
satisfy
and
. Solving this system yields
Thus the largest possible value of
is
.
~cr. djmathman
Solution 2
.
Substitution into
yields
.
Solving for
yields
or
, and we take the greater value
.
~4SunnyH
Solution 3
Let
We have
and
.
Then, from eq 1,
and substituting in to eq 2,
Thus,
Solving for
using the quadratic formula gets
Since we are looking for
which equals
we put
as our answer.
~sirswagger21
Video Solution by mop 2024
https://youtu.be/ezGvZgBLe8k&t=722s
~r00tsOfUnity
Video Solution (Just 2 min!)
Education, the Study of Everything
Video Solution(1-16)
~~Hayabusa1
See Also
| 2022 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 15 |
Followed by Problem 17 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing