2022 AMC 8 Problems/Problem 3: Difference between revisions
MRENTHUSIASM (talk | contribs) Created page with "==Problem== When three positive integers <math>a</math>, <math>b</math>, and <math>c</math> are multiplied together, their product is <math>100</math>. Suppose <math>a < b <..." |
|||
| (43 intermediate revisions by 17 users not shown) | |||
| Line 3: | Line 3: | ||
When three positive integers <math>a</math>, <math>b</math>, and <math>c</math> are multiplied together, their product is <math>100</math>. Suppose <math>a < b < c</math>. In how many ways can the numbers be chosen? | When three positive integers <math>a</math>, <math>b</math>, and <math>c</math> are multiplied together, their product is <math>100</math>. Suppose <math>a < b < c</math>. In how many ways can the numbers be chosen? | ||
<math>\textbf{(A)} | <math>\textbf{(A) } 0 \qquad \textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) } 4</math> | ||
==Solution== | ==Solution 1== | ||
The positive divisors of <math>100</math> are <cmath>1,2,4,5,10,20,25,50,100.</cmath> | |||
It is clear that <math>10\leq c\leq50,</math> so we apply casework to <math>c:</math> | |||
* If <math>c=10,</math> then <math>(a,b,c)=(2,5,10).</math> | |||
* If <math>c=20,</math> then <math>(a,b,c)=(1,5,20).</math> | |||
* If <math>c=25,</math> then <math>(a,b,c)=(1,4,25).</math> | |||
* If <math>c=50,</math> then <math>(a,b,c)=(1,2,50).</math> | |||
Together, the numbers <math>a,b,</math> and <math>c</math> can be chosen in <math>\boxed{\textbf{(E) } 4}</math> ways. | |||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
==Solution 2== | |||
The positive divisors of <math>100</math> are <cmath>1,2,4,5,10,20,25,50,100.</cmath> | |||
We apply casework to <math>a</math>: | |||
If <math>a=1</math>, then there are <math>3</math> cases: | |||
* <math>b=2,c=50</math> | |||
* <math>b=4,c=25</math> | |||
* <math>b=5,c=20</math> | |||
If <math>a=2</math>, then there is only <math>1</math> case: | |||
* <math>b=5,c=10</math> | |||
In total, there are <math>3+1=\boxed{\textbf{(E) } 4}</math> ways to choose distinct positive integer values of <math>a,b,c</math>. | |||
~MathFun1000 | |||
==Video Solution (A Creative Way To Think)== | |||
https://youtu.be/tYWp6fcUAik?si=V8hv_zOn_zYOi9E5&t=135 | |||
~hsnacademy | |||
==Video Solution 1 by Math-X (First understand the problem!!!)== | |||
https://youtu.be/oUEa7AjMF2A?si=tkBYOey2NioTPPPq&t=221 | |||
~Math-X | |||
==Video Solution 2 (CREATIVE THINKING!!!)== | |||
https://youtu.be/5-6zj2mBBSA | |||
~Education, the Study of Everything | |||
==Video Solution 3== | |||
https://www.youtube.com/watch?v=Ij9pAy6tQSg&t=142 | |||
~Interstigation | |||
==Video Solution 4== | |||
https://youtu.be/LHnC_Wz6fOU | |||
~savannahsolver | |||
==Video Solution 5== | |||
https://youtu.be/Q0R6dnIO95Y?t=98 | |||
~STEMbreezy | |||
==Video Solution 6== | |||
https://www.youtube.com/watch?v=KkZ95iNlFyc | |||
~harungurcan | |||
==Video Solution 7 by Dr. David== | |||
https://youtu.be/EbLGPhGVz6E | |||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2022|num-b=2|num-a=4}} | {{AMC8 box|year=2022|num-b=2|num-a=4}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
[[Category:Introductory Number Theory Problems]] | |||
Latest revision as of 01:16, 3 November 2025
Problem
When three positive integers
,
, and
are multiplied together, their product is
. Suppose
. In how many ways can the numbers be chosen?
Solution 1
The positive divisors of
are
It is clear that
so we apply casework to
- If
then 
- If
then 
- If
then 
- If
then 
Together, the numbers
and
can be chosen in
ways.
~MRENTHUSIASM
Solution 2
The positive divisors of
are
We apply casework to
:
If
, then there are
cases:
If
, then there is only
case:
In total, there are
ways to choose distinct positive integer values of
.
~MathFun1000
Video Solution (A Creative Way To Think)
https://youtu.be/tYWp6fcUAik?si=V8hv_zOn_zYOi9E5&t=135 ~hsnacademy
Video Solution 1 by Math-X (First understand the problem!!!)
https://youtu.be/oUEa7AjMF2A?si=tkBYOey2NioTPPPq&t=221
~Math-X
Video Solution 2 (CREATIVE THINKING!!!)
~Education, the Study of Everything
Video Solution 3
https://www.youtube.com/watch?v=Ij9pAy6tQSg&t=142
~Interstigation
Video Solution 4
~savannahsolver
Video Solution 5
https://youtu.be/Q0R6dnIO95Y?t=98
~STEMbreezy
Video Solution 6
https://www.youtube.com/watch?v=KkZ95iNlFyc
~harungurcan
Video Solution 7 by Dr. David
See Also
| 2022 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing