Art of Problem Solving

2001 AMC 8 Problems/Problem 18: Difference between revisions

Haha0201 (talk | contribs)
Michael0926 (talk | contribs)
 
(17 intermediate revisions by 7 users not shown)
Line 5: Line 5:
<math>\text{(A)}\ \dfrac{1}{36} \qquad \text{(B)}\ \dfrac{1}{18} \qquad \text{(C)}\ \dfrac{1}{6} \qquad \text{(D)}\ \dfrac{11}{36} \qquad \text{(E)}\ \dfrac{1}{3}</math>
<math>\text{(A)}\ \dfrac{1}{36} \qquad \text{(B)}\ \dfrac{1}{18} \qquad \text{(C)}\ \dfrac{1}{6} \qquad \text{(D)}\ \dfrac{11}{36} \qquad \text{(E)}\ \dfrac{1}{3}</math>


==Solution==
==Solution 1==


This is equivalent to asking for the probability that at least one of the numbers is a multiple of <math> 5 </math>, since if one of the numbers is a multiple of <math> 5 </math>, then the product with it and another integer is also a multiple of <math> 5 </math>, and if a number is a multiple of <math> 5 </math>, then since <math> 5 </math> is prime, one of the factors must also have a factor of <math> 5 </math>, and <math> 5 </math> is the only multiple of <math> 5 </math> on a die, so one of the numbers rolled must be a <math> 5 </math>. To find the probability of rolling at least one <math> 5 </math>, we can find the probability of not rolling a <math> 5 </math> and subtract that from <math> 1 </math>, since you either roll a <math> 5 </math> or not roll a <math> 5 </math>. The probability of not rolling a <math> 5 </math> on either dice is <math> \left(\frac{5}{6})(\frac{5}{6} \right)=\frac{25}{36} </math>. Therefore, the probability of rolling at least one five, and thus rolling two numbers whose product is a multiple of <math> 5 </math>, is <math> 1-\frac{25}{36}=\frac{11}{36}, \boxed{\text{D}} </math>
 
This is equivalent to asking for the probability that at least one of the numbers is a multiple of <math> 5 </math>, since if one of the numbers is a multiple of <math> 5 </math>, then the product with it and another integer is also a multiple of <math> 5 </math>, and if a number is a multiple of <math> 5 </math>, then since <math> 5 </math> is prime, one of the factors must also have a factor of <math> 5 </math>, and <math> 5 </math> is the only multiple of <math> 5 </math> on a die, so one of the numbers rolled must be a <math> 5 </math>. To find the probability of rolling at least one <math> 5 </math>, we can find the probability of not rolling a <math> 5 </math> and subtract that from <math> 1 </math>, since you either roll a <math> 5 </math> or not roll a <math> 5 </math>. The probability of not rolling a <math> 5 </math> on either dice is <math> \left(\frac{5}{6} \right) \left(\frac{5}{6} \right)=\frac{25}{36} </math>. Therefore, the probability of rolling at least one five, and thus rolling two numbers whose product is a multiple of <math> 5 </math>, is <math> 1-\frac{25}{36}=\frac{11}{36}, \boxed{\text{D}} </math>
 
==Solution 2 (quick & easy)==
 
 
The only way to get a multiple of <math> 5 </math> is to have at least one <math> 5 </math>. If the first dice rolls a <math> 5 </math>,  there are <math> 6 </math> ways to get a multiple of <math> 5 </math>. If the second dice rolls a <math> 5 </math>, there are also <math> 6 </math> ways. However, one case is repeated: both dice roll a <math> 5 </math>. Therefore, there are <math> 6 + 6 - 1 = 11 </math>, and there is a total of <math> 6 \times 6 </math> ways, so the probability is <math>\text{(D)}\ \dfrac{11}{36}</math>
 
Solution by [[User:IHateMath314265169|IHateMath314265169]]
 
==Video Solution==
 
https://youtu.be/4aX9-DZHgNw Soo, DRMS, NM


==See Also==
==See Also==
{{AMC8 box|year=2001|num-b=17|num-a=19}}
{{AMC8 box|year=2001|num-b=17|num-a=19}}
{{MAA Notice}}
{{MAA Notice}}

Latest revision as of 23:44, 2 November 2025

Problem

Two dice are thrown. What is the probability that the product of the two numbers is a multiple of 5?

$\text{(A)}\ \dfrac{1}{36} \qquad \text{(B)}\ \dfrac{1}{18} \qquad \text{(C)}\ \dfrac{1}{6} \qquad \text{(D)}\ \dfrac{11}{36} \qquad \text{(E)}\ \dfrac{1}{3}$

Solution 1

This is equivalent to asking for the probability that at least one of the numbers is a multiple of $5$, since if one of the numbers is a multiple of $5$, then the product with it and another integer is also a multiple of $5$, and if a number is a multiple of $5$, then since $5$ is prime, one of the factors must also have a factor of $5$, and $5$ is the only multiple of $5$ on a die, so one of the numbers rolled must be a $5$. To find the probability of rolling at least one $5$, we can find the probability of not rolling a $5$ and subtract that from $1$, since you either roll a $5$ or not roll a $5$. The probability of not rolling a $5$ on either dice is $\left(\frac{5}{6} \right) \left(\frac{5}{6} \right)=\frac{25}{36}$. Therefore, the probability of rolling at least one five, and thus rolling two numbers whose product is a multiple of $5$, is $1-\frac{25}{36}=\frac{11}{36}, \boxed{\text{D}}$

Solution 2 (quick & easy)

The only way to get a multiple of $5$ is to have at least one $5$. If the first dice rolls a $5$, there are $6$ ways to get a multiple of $5$. If the second dice rolls a $5$, there are also $6$ ways. However, one case is repeated: both dice roll a $5$. Therefore, there are $6 + 6 - 1 = 11$, and there is a total of $6 \times 6$ ways, so the probability is $\text{(D)}\ \dfrac{11}{36}$

Solution by IHateMath314265169

Video Solution

https://youtu.be/4aX9-DZHgNw Soo, DRMS, NM

See Also

2001 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing