'''Isogonal conjugates''' are pairs of [[point]]s in the [[plane]] with respect to a certain [[triangle]].
==The isogonal theorem==
== The isogonal theorem ==
<i><b>Isogonal lines definition</b></i>
=== Isogonal lines definition ===
Let a line <math>\ell</math> and a point <math>O</math> lying on <math>\ell</math> be given. A pair of lines symmetric with respect to <math>\ell</math> and containing the point <math>O</math> be called isogonals with respect to the pair <math>(\ell,O).</math>
Let a line <math>\ell</math> and a point <math>O</math> lying on <math>\ell</math> be given. A pair of lines symmetric with respect to <math>\ell</math> and containing the point <math>O</math> be called isogonals with respect to the pair <math>(\ell,O).</math>
Line 8:
Line 7:
Sometimes it is convenient to take one pair of isogonals as the base one, for example, <math>OA</math> and <math>OB</math> are the base pair. Then we call the remaining pairs as isogonals with respect to the angle <math>\angle AOB.</math>
Sometimes it is convenient to take one pair of isogonals as the base one, for example, <math>OA</math> and <math>OB</math> are the base pair. Then we call the remaining pairs as isogonals with respect to the angle <math>\angle AOB.</math>
<i><b>Projective transformation</b></i>
=== Projective transformation ===
It is known that the transformation that maps a point with coordinates <math>(x,y)</math> into a point with coordinates <math>(\frac{1}{x}, \frac {y}{x}),</math> is projective.
It is known that the transformation that maps a point with coordinates <math>(x,y)</math> into a point with coordinates <math>(\frac{1}{x}, \frac {y}{x}),</math> is projective.
Line 16:
Line 15:
It is clear that, under the converse transformation (also projective), such pairs of lines become isogonals, and the points equidistant from <math>\ell</math> lie on the isogonals.
It is clear that, under the converse transformation (also projective), such pairs of lines become isogonals, and the points equidistant from <math>\ell</math> lie on the isogonals.
<i><b>The isogonal theorem</b></i>
=== The isogonal theorem ===
[[File:Isogonal.png|390px|right]]
[[File:Isogonal.png|390px|right]]
Let two pairs of isogonals <math>OX - OX'</math> and <math>OY - OY'</math> with respect to the pair <math>(\ell,O)</math> be given. Denote <math>Z = XY \cap X'Y', Z' = X'Y \cap XY'.</math>
Let two pairs of isogonals <math>OX - OX'</math> and <math>OY - OY'</math> with respect to the pair <math>(\ell,O)</math> be given. Denote <math>Z = XY \cap X'Y', Z' = X'Y \cap XY'.</math>
Line 22:
Line 21:
Prove that <math>OZ</math> and <math>OZ'</math> are the isogonals with respect to the pair <math>(\ell,O).</math>
Prove that <math>OZ</math> and <math>OZ'</math> are the isogonals with respect to the pair <math>(\ell,O).</math>
<i><b>Proof</b></i>
==== Proof ====
[[File:Transform isogonal.png|390px|right]]
[[File:Transform isogonal.png|390px|right]]
Let us perform a projective transformation of the plane that maps the point <math>O</math> into a point at infinity and the line <math>\ell</math> maps to itself. In this case, the isogonals turn into a pair of straight lines parallel to <math>\ell</math> and equidistant from <math>\ell.</math>
Let us perform a projective transformation of the plane that maps the point <math>O</math> into a point at infinity and the line <math>\ell</math> maps to itself. In this case, the isogonals turn into a pair of straight lines parallel to <math>\ell</math> and equidistant from <math>\ell.</math>
Line 43:
Line 42:
Preimages of the points <math>Z</math> and <math>Z'</math> lie on the isogonals. <math>\blacksquare</math>
Preimages of the points <math>Z</math> and <math>Z'</math> lie on the isogonals. <math>\blacksquare</math>
<i><b>The isogonal theorem in the case of parallel lines</b></i>
=== The isogonal theorem in the case of parallel lines ===
[[File:Parallels 1.png|330px|right]]
[[File:Parallels 1.png|330px|right]]
Let <math>OY</math> and <math>OY'</math> are isogonals with respect <math>\angle XOX'.</math>
Let <math>OY</math> and <math>OY'</math> are isogonals with respect <math>\angle XOX'.</math>
Line 51:
Line 50:
Prove that <math>OZ</math> and line <math>l</math> through <math>O</math> parallel to <math>XY'</math> are the isogonals with respect <math>\angle XOX'.</math>
Prove that <math>OZ</math> and line <math>l</math> through <math>O</math> parallel to <math>XY'</math> are the isogonals with respect <math>\angle XOX'.</math>
<i><b>Proof</b></i>
==== Proof ====
The preimage of <math>Z'</math> is located at infinity on the line <math>l.</math>
The preimage of <math>Z'</math> is located at infinity on the line <math>l.</math>
Line 57:
Line 56:
The equality <math>Z'_x = -Z_x</math> implies the equality the slopes modulo of <math>OZ</math> and <math>l</math> to the bisector of <math>\angle XOX'. \blacksquare</math>
The equality <math>Z'_x = -Z_x</math> implies the equality the slopes modulo of <math>OZ</math> and <math>l</math> to the bisector of <math>\angle XOX'. \blacksquare</math>
<i><b>Converse theorem</b></i>
=== Converse theorem ===
[[File:Parallels 2.png|390px|right]]
[[File:Parallels 2.png|390px|right]]
Let lines <math>XY</math> and <math>X'Y'</math> intersect at point <math>Z, X'Y || XY'.</math>
Let lines <math>XY</math> and <math>X'Y'</math> intersect at point <math>Z, X'Y || XY'.</math>
Line 65:
Line 64:
Prove that <math>OY</math> and <math>OY'</math> are isogonals with respect <math>\angle XOX' (\angle XOY' = \angle YOX').</math>
Prove that <math>OY</math> and <math>OY'</math> are isogonals with respect <math>\angle XOX' (\angle XOY' = \angle YOX').</math>
<i><b>Proof</b></i>
==== Proof ====
The preimage of <math>Z'</math> is located at infinity on the line <math>l,</math> so the slope of <math>OZ</math> is known.
The preimage of <math>Z'</math> is located at infinity on the line <math>l,</math> so the slope of <math>OZ</math> is known.
Line 114:
Line 113:
*[[Circumradius]]
*[[Circumradius]]
'''vladimir.shelomovskii@gmail.com, vvsss'''
'''vvsss'''
==Fixed point==
==Fixed point==
Line 134:
Line 133:
Point <math>A'</math> symmetric <math>A</math> with respect <math>\ell</math> lies on isogonal <math>AD</math> with respect to <math>(\ell, D),</math> that is <math>DG.</math> <math>\blacksquare</math>
Point <math>A'</math> symmetric <math>A</math> with respect <math>\ell</math> lies on isogonal <math>AD</math> with respect to <math>(\ell, D),</math> that is <math>DG.</math> <math>\blacksquare</math>
The diagonals of a trapezoid <math>ABCD</math> intersect at point <math>P.</math>
Point <math>Q</math> lies between the parallel lines <math>BC</math> and <math>AD</math> such that <math>\angle AQD = \angle CQB,</math> and line <math>CD</math> separates points <math>P</math> and <math>Q.</math>
Prove that <math>\angle BQP = \angle DAQ.</math>
<i><b>Proof</b></i>
<math>\angle AQD = \angle CQB \implies</math>
<math>BQ</math> and <math>AQ</math> are isogonals with respect <math>\angle CQD.</math>
<math>P =AC \cap BD, BC || AD \implies</math>
<math>QS || AD</math> is isogonal to <math>QP</math> with respect <math>\angle CQD.</math>
From the converse of <i><b>The isogonal theorem</b></i> we get
Let triangle <math>\triangle ABC</math> be given. Let <math>\omega</math> be the circumcircle of <math>ABC.</math> Let point <math>P</math> be in the plane of <math>\triangle ABC, P \notin AB, P \notin BC, P \notin AC, P \notin \omega.</math>
Let triangle <math>\triangle ABC</math> be given. Let <math>\omega</math> be the circumcircle of <math>ABC.</math> Let point <math>P</math> be in the plane of <math>\triangle ABC, P \notin AB, P \notin BC, P \notin AC, P \notin \omega.</math>
Denote by <math>a,b,c</math> the lines <math>BC, CA, AB,</math> respectively. Denote by <math>p_a, p_b, p_c</math> the lines <math>PA</math>, <math>PB</math>, <math>PC</math>, respectively.
Denote by <math>a,b,c</math> the lines <math>BC, CA, AB,</math> respectively. Denote by <math>p_a, p_b, p_c</math> the lines <math>PA</math>, <math>PB</math>, <math>PC</math>, respectively.
Line 534:
Line 508:
'''vladimir.shelomovskii@gmail.com, vvsss'''
'''vladimir.shelomovskii@gmail.com, vvsss'''
==1995 USAMO Problems/Problem 3==
==Equidistant isogonal conjugate points==
[[File:1995 USAMO 3.png|300px|right]]
[[File:Equal distances.png|300px|right]]
Given a nonisosceles, nonright triangle <math>ABC,</math> let <math>O</math> denote the center of its circumscribed circle, and let <math>A_1, \, B_1,</math> and <math>C_1</math> be the midpoints of sides <math>BC, \, CA,</math> and <math>AB,</math> respectively. Point <math>A_2</math> is located on the ray <math>OA_1</math> so that <math>\triangle OAA_1</math> is similar to <math>\triangle OA_2A</math>. Points <math>B_2</math> and <math>C_2</math> on rays <math>OB_1</math> and <math>OC_1,</math> respectively, are defined similarly. Prove that lines <math>AA_2, \, BB_2,</math> and <math>CC_2</math> are concurrent.
[[File:Equidistant points.png|300px|right]]
Let triangle <math>ABC</math> with incenter <math>I</math> be given.
Denote <math>\omega = \odot BIC.</math>
<i><b>Solution</b></i>
Let point <math>P'</math> be the isogonal conjugate of the point <math>P</math> with respect to <math>\triangle ABC.</math>
Prove that <math>AP = AP'</math> iff <math>P \in \omega.</math>
Let <math>AH</math> be the altitude of <math>\triangle ABC \implies</math>
Points <math>P</math> and <math>P'</math> are symmetric with respect <math>AI \implies PE = P'E.</math>
If median and symmedian start from any vertex of the triangle, then the angle formed by the symmedian and the angle side has the same measure as the angle between the median and the other side of the angle.
Suppose that <math>P \notin \odot BIC.</math>
<math>AA_1, BB_1, CC_1</math> are medians, therefore <math>AA_2, BB_2, CC_2</math> are symmedians, so the three symmedians meet at a point which is triangle center called the Lemoine point.
Let <math>O</math> be the center of <math>\odot BPC, O'</math> be the center of <math>\odot BP'C.</math>
'''vladimir.shelomovskii@gmail.com, vvsss'''
==2011 USAMO Problems/Problem 5==
It is known that points <math>O</math> and <math>O'</math> are inverted with respect to the circumcircle of <math>\triangle ABC.</math>
[[File:2011 USAMO 5.png|400px|right]]
Let <math>P</math> be a given point inside quadrilateral <math>ABCD</math>. Points <math>Q_1</math> and <math>Q_2</math> are located within <math>ABCD</math> such that <math>\angle Q_1 BC = \angle ABP</math>, <math>\angle Q_1 CB = \angle DCP</math>, <math>\angle Q_2 AD = \angle BAP</math>, <math>\angle Q_2 DA = \angle CDP</math>.
Prove that <math>\overline{Q_1 Q_2} \parallel \overline{AB}</math> if and only if <math>\overline{Q_1 Q_2} \parallel \overline{CD}</math>.
Points <math>O, O',</math> and <math>E</math> belong to bisector <math>BC, E \in \odot ABC.</math>
<i><b>Solution</b></i>
Therefore <math>\overset{\Large\frown} {BIC}</math> divide <math>\overset{\Large\frown} {BPC}</math> and <math>\overset{\Large\frown} {BP'C}.</math>
<i><b>Case 1</b></i> The lines <math>AB</math> and <math>CD</math> are not parallel. Denote <math>E = AB \cap CD.</math>
WLOG (see diagram) <math>PE > IE > P'E,</math> contradiction.
Point <math>Q_1</math> isogonal conjugate of a point <math>P</math> with respect to a triangle <math>\triangle EBC \implies</math>
<math>EP</math> and <math>EQ_1</math> are isogonals with respect to <math>\angle BEC.</math>
Similarly point <math>Q_2</math> isogonal conjugate of a point <math>P</math> with respect to a triangle <math>\triangle EAD \implies</math>
<math>EP</math> and <math>EQ_2</math> are isogonals with respect to <math>\angle BEC.</math>
Therefore points <math>E, Q_1, Q_2</math> lies on the isogonal <math>EP</math> with respect to <math>\angle BEC \implies</math>
<math>Q_1Q_2</math> is not parallel to <math>AB</math> or <math>CD.</math>
<i><b>Case 2</b></i> <math>AB||CD.</math> We use <i><b>The isogonal theorem in case parallel lines</b></i> and get
<cmath>AB||Q_1Q_2 || CD. \blacksquare</cmath>
'''vladimir.shelomovskii@gmail.com, vvsss'''
==Simplified distance formula for isogonal points==
==Simplified distance formula for isogonal points==
[[File:1 pare and.png|370px|right]]
[[File:1 pare and.png|330px|right]]
Let triangle <math>\triangle ABC,</math> points <math>P</math> and <math>P',</math> and <math>\odot ABC = \Omega</math> be given. Let point <math>P'</math> be the isogonal conjugate of a point <math>P</math> with respect to a triangle <math>\triangle ABC.</math>
Let triangle <math>\triangle ABC,</math> points <math>P</math> and <math>P',</math> and <math>\odot ABC = \Omega</math> be given. Let point <math>P'</math> be the isogonal conjugate of a point <math>P</math> with respect to a triangle <math>\triangle ABC.</math>
<cmath>D = AP \cap BC, E = AP' \cap BC, F = AP \cap \Omega, G = AP' \cap \Omega.</cmath>
<cmath>D = AP \cap BC, E = AP' \cap BC,</cmath>
<cmath>F = AP \cap \Omega, G = AP' \cap \Omega.</cmath>
Prove that <math>PF \cdot P'G= AF \cdot EG.</math>
Prove that <math>PF \cdot P'G= AF \cdot EG.</math>
Line 609:
Line 570:
==Point on circumcircle==
==Point on circumcircle==
[[File:RADAX.png|350px|right]]
[[File:RADAX.png|330px|right]]
Let triangle <math>\triangle ABC,</math> points <math>D \in BC</math> and <math>E \in BC</math> be given.
Let triangle <math>\triangle ABC,</math> points <math>D \in BC</math> and <math>E \in BC</math> be given.
Denote <math>\Omega = \odot ABC, \omega = \odot AED, G = \omega \cap \Omega \ne A, F = AG \cap BC,</math>
<cmath>G = \omega \cap \Omega \ne A, F = AG \cap BC,</cmath>
<cmath>K = AE \cap \Omega \ne A, L = GD \cap \Omega \ne G.</cmath>
<cmath>K = AE \cap \Omega \ne A, L = GD \cap \Omega \ne G.</cmath>
Prove that <math>KL || BC.</math>
Prove that <math>KL || BC.</math>
Line 629:
Line 591:
<math>AL</math> is the isogonal conjugate to <math>AK</math> with respect <math>\angle BAC.</math>
<math>AL</math> is the isogonal conjugate to <math>AK</math> with respect <math>\angle BAC.</math>
'''vladimir.shelomovskii@gmail.com, vvsss'''
'''vladimir.shelomovskii@gmail.com, vvsss'''
==Fixed point on circumcircle==
==Fixed point on circumcircle==
Line 651:
Line 612:
Spiral similarity centered at <math>A</math> which maps <math>\Omega</math> into <math>\odot AYD</math> transform point <math>H</math> into point <math>D \implies</math>
Spiral similarity centered at <math>A</math> which maps <math>\Omega</math> into <math>\odot AYD</math> transform point <math>H</math> into point <math>D \implies</math>
<cmath>\angle BAG = \angle CAH \implies H \in AP'.</cmath>
Points <math>F', H,</math> and <math>D</math> are collinear.
Points <math>F', H,</math> and <math>D</math> are collinear.
Line 691:
Line 655:
==Miquel point for isogonal conjugate points==
==Miquel point for isogonal conjugate points==
[[File:Miquel of one pare.png|370px|right]]
[[File:Miquel of one pare.png|330px|right]]
[[File:Miquel 1 pare.png|370px|right]]
[[File:Miquel 1 pare.png|330px|right]]
Let triangle <math>\triangle ABC,</math> points <math>Q \in BC</math> and <math>P</math> be given. Let point <math>P'</math> be the isogonal conjugate of a point <math>P</math> with respect to a triangle <math>\triangle ABC.</math>
Let triangle <math>\triangle ABC,</math> points <math>Q \in BC</math> and <math>P</math> be given. Let point <math>P'</math> be the isogonal conjugate of a point <math>P</math> with respect to a triangle <math>\triangle ABC.</math>
<cmath>D = QP \cap AP', E = AP \cap QP'.</cmath>
<cmath>D = QP \cap AP', E = AP \cap QP'.</cmath>
Line 705:
Line 669:
Points <math>P</math> and <math>E</math> lies on the same line, therefore <cmath>PF \cdot P'G = EF \cdot DG \implies</cmath>
Points <math>P</math> and <math>E</math> lies on the same line, therefore <cmath>PF \cdot P'G = EF \cdot DG \implies</cmath>
Point <math>M</math> lies on circles <math>APD</math> and <math>AEP' \implies </math> spiral similarity centered at <math>M</math> transform triangle <math>\triangle MPE</math> to <math>\triangle MDP' \implies</math>
Point <math>M</math> lies on circles <math>APD</math> and <math>AEP' \implies </math> spiral similarity centered at <math>M</math> transform triangle <math>\triangle MPE</math> to <math>\triangle MDP' \implies</math>
Let triangle <math>\triangle ABC,</math> and points <math>D \in BC</math> and <math>E \in \odot ABC = \Omega</math> be given.
Let triangle <math>\triangle ABC,</math> and points <math>D \in BC</math> and <math>E \in \odot ABC = \Omega</math> be given.
Let <math>\odot ADE = \omega, F = BC \cap \omega \cap BC \ne D.</math>
Let <math>\odot ADE = \omega, F = BC \cap \omega \ne D.</math>
Let lines <math>AF</math> and <math>AG (G \in BC)</math> be the isogonals with respect to the angle <math>\angle BAC, \odot AGD = \theta.</math>
Let lines <math>AF</math> and <math>AG (G \in BC)</math> be the isogonals with respect to the angle <math>\angle BAC, \odot AGD = \theta.</math>
Line 721:
Line 687:
Let <math>P</math> be an arbitrary point on <math>AF, Q = DP \cap AG, H = \theta \cap \Omega.</math>
Let <math>P</math> be an arbitrary point on <math>AF, Q = DP \cap AG, H = \theta \cap \Omega.</math>
Prove that <math>EP \cap HQ</math> lies on <math>\Omega.</math>
Prove that <math>X = EP \cap HQ</math> lies on <math>\Omega.</math>
===Simplified problem===
===Simplified problem===
Line 729:
Line 695:
Prove that <math>X = EF \cap HG \in \Omega.</math>
Prove that <math>X = EF \cap HG \in \Omega.</math>
[[File:Point on circumcircle 1.png|400px|right]]
[[File:Point on circumcircle 1.png|320px|right]]
<i><b>Proof, Simplified problem</b></i>
<i><b>Proof, Simplified problem</b></i>
Line 740:
Line 706:
<i><b>Proof</b></i>
<i><b>Proof</b></i>
[[File:Point on circumcircle 2.png|400px|right]]
[[File:Point on circumcircle 2.png|350px|right]]
Let points <math>P'</math> and <math>Q'</math> be the isogonal conjugate of a points <math>P</math> and <math>Q</math> with respect to a triangle <math>\triangle ABC, \omega' = \odot Q'PD, \theta' = \odot P'QD.</math>
Let points <math>P'</math> and <math>Q'</math> be the isogonal conjugate of a points <math>P</math> and <math>Q</math> with respect to a triangle <math>\triangle ABC, \omega' = \odot Q'PD, \theta' = \odot P'QD.</math>
points <math>M, H, E, X</math> are concyclic on <math>\Omega.</math>
points <math>M, H, E, X</math> are concyclic on <math>\Omega.</math>
'''vladimir.shelomovskii@gmail.com, vvsss'''
==Isogonal of line BC with respect to angle BAC==
[[File:Isogonal of BC.png|350px|right]]
Let triangle <math>\triangle ABC</math> be given, <math>\Omega = \odot ABC, AD || BC.</math>
Let lines <math>AE</math> and <math>AD</math> be the isogonals with respect to <math>\angle BAC.</math>
Prove that <math>AE</math> is tangent to <math>\Omega.</math>
<i><b>Proof</b></i>
Let <math>O</math> and <math>H</math> be the circumcenter and the orthocenter of <math>\triangle ABC,</math> respectively.
<cmath>AH \perp BC, AD || BC \implies AH \perp AD.</cmath>
<math>AH</math> is isogonal to <math>AO</math> with respect to <math>\angle BAC \implies AE \perp AO \implies AE</math> is tangent to <math>\Omega.</math>
'''vladimir.shelomovskii@gmail.com, vvsss'''
'''vladimir.shelomovskii@gmail.com, vvsss'''
==Isogonal bijection lines and points==
[[File:Isogonal of l.png|330px|right]]
Let triangle <math>\triangle ABC</math> and line <math>\ell, P \in \ell</math> be given, <math>\Omega = \odot ABC.</math>
Define <math>G \in \Omega</math> the point with property <math>G' \in \ell.</math>
Prove that <math>\angle ABG</math> is equal the angle <math>\theta</math> between <math>\ell</math> and <math>BC.</math>
<i><b>Proof</b></i>
WLOG, the configuration is the same as shown on diagram, <math>F = \ell \cap BC, AD' || \ell, \theta = \angle PFB, AD || BC,</math>
<math>AE</math> is the tangent to <math>\Omega.</math>
<math>AD</math> is isogonal to <math>AE, AD'</math> is isogonal to <math>AG</math> with respect to <math>\angle BAC \implies</math>
A bijection has been established between the set of lines parallel to a given one and the set of points of the circumcircle.
'''vladimir.shelomovskii@gmail.com, vvsss'''
==Miquel point for two pare isogonal points==
[[File:2 pare Miquel o.png|340px|right]]
Let triangle <math>\triangle ABC</math> and points <math>P</math> and <math>Q</math> be given.
Let points <math>P'</math> and <math>Q'</math> be the isogonal conjugate of the points <math>P</math> and <math>Q</math> with respect to <math>\triangle ABC, \Omega = \odot ABC, M</math> is the Miquel point of quadrilateral <math>PQP'Q'.</math>
Let triangle <math>ABC</math> with isogonic center <math>F (X(13)</math> or <math>X(14))</math> be given. Denote <math>\omega = \odot BIC.</math>
Let line <math>\ell_A</math> be the axial symmetry of line <math>AF</math> according to the sideline <math>BC.</math>
Define lines <math>\ell_B</math> and <math>\ell_C</math> similarly.
Prove that the lines <math>\ell_A, \ell_B,</math> and <math>\ell_C</math> are concurrent.
<i><b>Proof</b></i>
Let <math>I</math> be the incenter of <math>\triangle ABC, F =X(13).</math>
<cmath>A_1 = AF \cup BC, E = AI \cup BC, D \in BC,</cmath>
<cmath>AD \perp AE, \omega = \odot AED.</cmath>
Let <math>F_1 = AF \cup \omega, F'</math> is simmetric to <math>F_1</math> with respect <math>BC \implies A_1F' = \ell_A.</math>
The diameter <math>DE</math> of <math>\omega</math> lies on <math>BC \implies F_1 \in \omega, \overset{\Large\frown} {EF_1} = \overset{\Large\frown} {EF'} \implies \angle EAF_1 = \angle EAF'.</math>
Therefore <math>AF'</math> is the isogonal conjugate of <math>AF</math> with respect to <math>\angle BAC.</math>
Similarly <math>\ell_B</math> and <math>\ell_C</math> are the isogonal conjugate of <math>BF</math> and <math>CF,</math> so point <math>F'</math> is the isogonal conjugate of point <math>F</math> with respect to <math>\triangle ABC.</math>
The second diagram show construction in the case <math>F =X(14).</math> The proof is similar.
'''vladimir.shelomovskii@gmail.com, vvsss'''
==Three pairs isogonal points==
[[File:Shar 2024 20.png|350px|right]]
Let a triangle <math>ABC,</math> points <math>D</math> and <math>E \in AD</math> be given, <math>F = CD \cap BE.</math>
Points <math>D', E'</math> and <math>F'</math> are the isogonal conjugate of the points <math>D, E,</math> and <math>F,</math> respectively, with respect to <math>\triangle ABC.</math>
Let a triangle <math>ABC,</math> points <math>D</math> and <math>E \in AD</math> be given, <math>F = CD \cap BE.</math>
Points <math>D', E'</math> and <math>F'</math> are the isogonal conjugate of the points <math>D, E,</math> and <math>F,</math> respectively, with respect to <math>\triangle ABC.</math>
Denote <math>R</math> and <math>R'</math> the circumradii of triangles <math>\triangle DEF</math> and <math>\triangle D'E'F',</math> respectively.
Prove that <math>\frac {AD \cdot BE \cdot CF}{R} = \frac {AE' \cdot BF' \cdot CD'}{R'}.</math>
Comment: The main idea of the proof was found by Leonid Shatunov.
'''vladimir.shelomovskii@gmail.com, vvsss'''
== Problems ==
*[[File:1995 USAMO 3.png|300px|right]] Given a nonisosceles, nonright triangle <math>ABC,</math> let <math>O</math> denote the center of its circumscribed circle, and let <math>A_1, \, B_1,</math> and <math>C_1</math> be the midpoints of sides <math>BC, \, CA,</math> and <math>AB,</math> respectively. Point <math>A_2</math> is located on the ray <math>OA_1</math> so that <math>\triangle OAA_1</math> is similar to <math>\triangle OA_2A</math>. Points <math>B_2</math> and <math>C_2</math> on rays <math>OB_1</math> and <math>OC_1,</math> respectively, are defined similarly. Prove that lines <math>AA_2, \, BB_2,</math> and <math>CC_2</math> are concurrent. ([[1995 USAMO Problems/Problem 3|Source]])
*[[File:2011 USAMO 5.png|400px|right]] Let <math>P</math> be a given point inside quadrilateral <math>ABCD</math>. Points <math>Q_1</math> and <math>Q_2</math> are located within <math>ABCD</math> such that <math>\angle Q_1 BC = \angle ABP</math>, <math>\angle Q_1 CB = \angle DCP</math>, <math>\angle Q_2 AD = \angle BAP</math>, <math>\angle Q_2 DA = \angle CDP</math>. Prove that <math>\overline{Q_1 Q_2} \parallel \overline{AB}</math> if and only if <math>\overline{Q_1 Q_2} \parallel \overline{CD}</math>. ([[2011 USAMO Problems/Problem 5|Source]])
*[[File:2024 16.png|390px|right]] Let <math>AA', BB',</math> and <math>CC'</math> be the bisectors of a triangle <math>\triangle ABC.</math>
:The segments <math>BB'</math> and <math>A'C'</math> meet at point <math>D.</math> Let <math>E</math> be the projection of <math>D</math> to <math>AC.</math>
:Points <math>P</math> and <math>Q</math> on the sides <math>AB</math> and <math>BC,</math> respectively, are such that <math>EP = PD, EQ = QD.</math>
:Prove that <math>\angle PDB' = \angle EDQ.</math> ([[Sharygin_Olympiads,_the_best|Source]])
*IMO 2007 Short list/G3
[[File:Trapezoid 17.png|400px|right]]
The diagonals of a trapezoid <math>ABCD</math> intersect at point <math>P.</math>
Point <math>Q</math> lies between the parallel lines <math>BC</math> and <math>AD</math> such that <math>\angle AQD = \angle CQB,</math> and line <math>CD</math> separates points <math>P</math> and <math>Q.</math>
Prove that <math>\angle BQP = \angle DAQ.</math>
<i><b>Proof</b></i>
<math>\angle AQD = \angle CQB \implies</math>
<math>BQ</math> and <math>AQ</math> are isogonals with respect <math>\angle CQD.</math>
<math>P =AC \cap BD, BC || AD \implies</math>
<math>QS || AD</math> is isogonal to <math>QP</math> with respect <math>\angle CQD.</math>
From the converse of <i><b>The isogonal theorem</b></i> we get
Let a line and a point lying on be given. A pair of lines symmetric with respect to and containing the point be called isogonals with respect to the pair
Sometimes it is convenient to take one pair of isogonals as the base one, for example, and are the base pair. Then we call the remaining pairs as isogonals with respect to the angle
Projective transformation
It is known that the transformation that maps a point with coordinates into a point with coordinates is projective.
If the abscissa axis coincides with the line and the origin coincides with the point then the isogonals define the equations and the lines symmetrical with respect to the line become their images.
It is clear that, under the converse transformation (also projective), such pairs of lines become isogonals, and the points equidistant from lie on the isogonals.
Let us perform a projective transformation of the plane that maps the point into a point at infinity and the line maps to itself. In this case, the isogonals turn into a pair of straight lines parallel to and equidistant from
The converse (also projective) transformation maps the points equidistant from onto isogonals. We denote the image and the preimage with the same symbols.
Let the images of isogonals are vertical lines. Let coordinates of images of points be
Equation of a straight line is
Equation of a straight line is
The abscissa of the point is
Equation of a straight line is
Equation of a straight line is
The abscissa of the point is
Preimages of the points and lie on the isogonals.
The isogonal theorem in the case of parallel lines
Let us perform a projective transformation of the plane that maps the point to a point at infinity and the line into itself.
In this case, the images of points and are equidistant from the image of contains the midpoints of and , that is, is the Gauss line of the complete quadrilateral
bisects
The preimages of the points and lie on the isogonals and
Let triangle be given. Let be the circumcircle of Let point be in the plane of
Denote by the lines respectively. Denote by the lines , , , respectively.
Denote by , , the reflections of , , over the angle bisectors of angles , , , respectively.
Prove that lines , , concur at a point
This point is called the isogonal conjugate of with respect to triangle .
Proof
By our constructions of the lines , , and this statement remains true after permuting . Therefore by the trigonometric form of Ceva's Theorem
so again by the trigonometric form of Ceva, the lines concur, as was to be proven.
Corollary
Let points P and Q lie on the isogonals with respect angles and of triangle
Then these points lie on isogonals with respect angle
Corollary 2
Let point be in the sideline of
Then the isogonal conjugate of a point is a point
Points and do not have an isogonally conjugate point.
Let fixed triangle be given. Let the arbitrary point not be on sidelines of Let be the point on isogonal of with respect angle
Let be the crosspoint of isogonal of with respect angle and isogonal of with respect angle
Prove that lines and are concurrent.
Proof
Denote
and are isogonals with respect
and S lie on isogonals of
is isogonal conjugated of with respect
and lie on isogonals of
Therefore points and lie on the same line which is isogonal to with respect
Let triangle points and be given. Let point be the isogonal conjugate of a point with respect to a triangle
Let be the Miquel point of a complete quadrilateral
Prove that lies on the circumcircle of
Proof
Point is the isogonal conjugate of a point with respect to a triangle so point is the isogonal conjugate of a point with respect to a triangle
Points and lies on the same line, therefore
Point lies on circles and spiral similarity centered at transform triangle to
WLOG, the configuration is the same as shown on diagram, is the tangent to
is isogonal to is isogonal to with respect to
A bijection has been established between the set of lines parallel to a given one and the set of points of the circumcircle.
Let a triangle points and be given,
Points and are the isogonal conjugate of the points and respectively, with respect to
Prove that
Proof
Denote
We use isogonal properties and get
By applying the Law of Sines, we get
Symilarly,
We multiply these equations and get
vladimir.shelomovskii@gmail.com, vvsss
Points and are the isogonal conjugate of the points and respectively, with respect to
Denote and the circumradii of triangles and respectively.
Prove that
Proof
Denote
where is the area of the figure
Similarly,
Similarly,
It is known that ( Three pairs isogonal points), therefore
Comment: The main idea of the proof was found by Leonid Shatunov.
vladimir.shelomovskii@gmail.com, vvsss
Problems
Error creating thumbnail: File missing Given a nonisosceles, nonright triangle let denote the center of its circumscribed circle, and let and be the midpoints of sides and respectively. Point is located on the ray so that is similar to . Points and on rays and respectively, are defined similarly. Prove that lines and are concurrent. (Source)