2001 AMC 10 Problems/Problem 5: Difference between revisions
Pidigits125 (talk | contribs) |
|||
| (8 intermediate revisions by 8 users not shown) | |||
| Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
How many of the twelve pentominoes pictured below at least one line of symmetry? | How many of the twelve pentominoes pictured below have at least one line of symmetry? | ||
<math> \textbf{(A)} | <asy> | ||
unitsize(5mm); | |||
defaultpen(linewidth(1pt)); | |||
draw(shift(2,0)*unitsquare); | |||
draw(shift(2,1)*unitsquare); | |||
draw(shift(2,2)*unitsquare); | |||
draw(shift(1,2)*unitsquare); | |||
draw(shift(0,2)*unitsquare); | |||
draw(shift(2,4)*unitsquare); | |||
draw(shift(2,5)*unitsquare); | |||
draw(shift(2,6)*unitsquare); | |||
draw(shift(1,5)*unitsquare); | |||
draw(shift(0,5)*unitsquare); | |||
draw(shift(4,8)*unitsquare); | |||
draw(shift(3,8)*unitsquare); | |||
draw(shift(2,8)*unitsquare); | |||
draw(shift(1,8)*unitsquare); | |||
draw(shift(0,8)*unitsquare); | |||
draw(shift(6,8)*unitsquare); | |||
draw(shift(7,8)*unitsquare); | |||
draw(shift(8,8)*unitsquare); | |||
draw(shift(9,8)*unitsquare); | |||
draw(shift(9,9)*unitsquare); | |||
draw(shift(6,5)*unitsquare); | |||
draw(shift(7,5)*unitsquare); | |||
draw(shift(8,5)*unitsquare); | |||
draw(shift(7,6)*unitsquare); | |||
draw(shift(7,4)*unitsquare); | |||
draw(shift(6,1)*unitsquare); | |||
draw(shift(7,1)*unitsquare); | |||
draw(shift(8,1)*unitsquare); | |||
draw(shift(6,0)*unitsquare); | |||
draw(shift(7,2)*unitsquare); | |||
draw(shift(11,8)*unitsquare); | |||
draw(shift(12,8)*unitsquare); | |||
draw(shift(13,8)*unitsquare); | |||
draw(shift(14,8)*unitsquare); | |||
draw(shift(13,9)*unitsquare); | |||
draw(shift(11,5)*unitsquare); | |||
draw(shift(12,5)*unitsquare); | |||
draw(shift(13,5)*unitsquare); | |||
draw(shift(11,6)*unitsquare); | |||
draw(shift(13,4)*unitsquare); | |||
draw(shift(11,1)*unitsquare); | |||
draw(shift(12,1)*unitsquare); | |||
draw(shift(13,1)*unitsquare); | |||
draw(shift(13,2)*unitsquare); | |||
draw(shift(14,2)*unitsquare); | |||
draw(shift(16,8)*unitsquare); | |||
draw(shift(17,8)*unitsquare); | |||
draw(shift(18,8)*unitsquare); | |||
draw(shift(17,9)*unitsquare); | |||
draw(shift(18,9)*unitsquare); | |||
draw(shift(16,5)*unitsquare); | |||
draw(shift(17,6)*unitsquare); | |||
draw(shift(18,5)*unitsquare); | |||
draw(shift(16,6)*unitsquare); | |||
draw(shift(18,6)*unitsquare); | |||
draw(shift(16,0)*unitsquare); | |||
draw(shift(17,0)*unitsquare); | |||
draw(shift(17,1)*unitsquare); | |||
draw(shift(18,1)*unitsquare); | |||
draw(shift(18,2)*unitsquare);</asy> | |||
<math>\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } 7</math> | |||
== Solution == | == Solution == | ||
[[File:Pentonimoes.gif]] | |||
The ones with lines over the shapes have at least one line of symmetry. Counting the number of shapes that have line(s) on them, | The ones with lines over the shapes have at least one line of symmetry. Counting the number of shapes that have line(s) on them, | ||
we find <math> \boxed{\textbf{(D)}\ 6} </math> pentominoes. | we find <math> \boxed{\textbf{(D)}\ 6} </math> pentominoes. | ||
==Video Solution by Daily Dose of Math== | |||
https://youtu.be/svFpNvUUY7E?si=CloMWtqbbhBNgWy_ | |||
~Thesmartgreekmathdude | |||
== See Also == | == See Also == | ||
{{AMC10 box|year=2001|num-b=4|num-a=6}} | {{AMC10 box|year=2001|num-b=4|num-a=6}} | ||
{{MAA Notice}} | |||
[[Category: Introductory Geometry Problems]] | |||
Latest revision as of 16:13, 18 October 2025
Problem
How many of the twelve pentominoes pictured below have at least one line of symmetry?
Solution
Error creating thumbnail: Unable to save thumbnail to destination
The ones with lines over the shapes have at least one line of symmetry. Counting the number of shapes that have line(s) on them,
we find
pentominoes.
Video Solution by Daily Dose of Math
https://youtu.be/svFpNvUUY7E?si=CloMWtqbbhBNgWy_
~Thesmartgreekmathdude
See Also
| 2001 AMC 10 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination