2015 AMC 12A Problems/Problem 10: Difference between revisions
No edit summary |
|||
| (11 intermediate revisions by 2 users not shown) | |||
| Line 5: | Line 5: | ||
<math> \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 18 \qquad\textbf{(E)}\ 26</math> | <math> \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 18 \qquad\textbf{(E)}\ 26</math> | ||
==Solution== | ==Solution 1== | ||
Use [[SFFT]] to get <math>(x+1)(y+1)=81</math>. The terms <math>(x+1)</math> and <math>(y+1)</math> must be factors of <math>81</math>, which include <math>1, 3, 9, 27, 81</math>. Because <math>x > y</math>, <math>x+1</math> is equal to <math>27</math> or <math>81</math>. But if <math>x+1=81</math>, then <math>y=0</math> and so <math>x=\boxed{\textbf{(E)}\ 26}</math>. | Use [[SFFT]] to get <math>(x+1)(y+1)=81</math>. The terms <math>(x+1)</math> and <math>(y+1)</math> must be factors of <math>81</math>, which include <math>1, 3, 9, 27, 81</math>. Because <math>x > y</math>, <math>x+1</math> is equal to <math>27</math> or <math>81</math>. But if <math>x+1=81</math>, then <math>y=0</math> and so <math>x=\boxed{\textbf{(E)}\ 26}</math>. | ||
==Solution 2== | |||
Plug in values of <math>x</math> and solve for <math>y</math>, noting <math>x > y</math> and that <math>y</math> is an integer. | |||
<math>x = 8</math>: | |||
<math> | |||
8 + y + 8y = 80 | |||
</math> | |||
<math>y = 8</math> (Does not work because <math>x > y</math>) | |||
<math>x = 10</math>: | |||
<math> | |||
10 + y + 10y = 80 | |||
</math> | |||
<math>y = 70/11</math> (Does not work because <math>y</math> is not an integer) | |||
<math>x = 15</math>: | |||
<math> | |||
15 + y + 15y = 80 | |||
</math> | |||
<math>y = 65/16</math> (Does not work because <math>y</math> is not an integer) | |||
<math>x = 18</math>: | |||
<math> | |||
18 + y + 18y = 80 | |||
</math> | |||
<math>y = 62/19</math> (Does not work because <math>y</math> is not an integer) | |||
Thus <math>x = 26</math>, <math>\boxed{\textbf{(E)}\ 26}</math>. | |||
~ Solution by CYB3RFLARE7408 | |||
== Video Solution by OmegaLearn == | |||
https://youtu.be/ba6w1OhXqOQ?t=4512 | |||
~ pi_is_3.14 | |||
== See Also == | == See Also == | ||
{{AMC12 box|year=2015|ab=A|num-b=9|num-a=11}} | {{AMC12 box|year=2015|ab=A|num-b=9|num-a=11}} | ||
Latest revision as of 14:47, 28 September 2025
Problem
Integers
and
with
satisfy
. What is
?
Solution 1
Use SFFT to get
. The terms
and
must be factors of
, which include
. Because
,
is equal to
or
. But if
, then
and so
.
Solution 2
Plug in values of
and solve for
, noting
and that
is an integer.
:
(Does not work because
)
:
(Does not work because
is not an integer)
:
(Does not work because
is not an integer)
:
(Does not work because
is not an integer)
Thus
,
.
~ Solution by CYB3RFLARE7408
Video Solution by OmegaLearn
https://youtu.be/ba6w1OhXqOQ?t=4512
~ pi_is_3.14
See Also
| 2015 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 9 |
Followed by Problem 11 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |