Art of Problem Solving

2015 AMC 12B Problems/Problem 8: Difference between revisions

Cxsmi (talk | contribs)
No edit summary
A7456321 (talk | contribs)
 
(11 intermediate revisions by 4 users not shown)
Line 5: Line 5:


==Solution 1==
==Solution 1==
<math>(625^{\log_5 2015})^\frac{1}{4}
<math>(625^{\log_5 2015})^\frac{1}{4}=((5^4)^{\log_5 2015})^\frac{1}{4}=(5^{4 \cdot \log_5 2015})^\frac{1}{4}=(5^{\log_5 2015 \cdot 4})^\frac{1}{4}=((5^{\log_5 2015})^4)^\frac{1}{4}=(2015^4)^\frac{1}{4}=\boxed{\textbf{(D)}\; 2015}</math>
= ((5^4)^{\log_5 2015})^\frac{1}{4}
= (5^{4 \cdot \log_5 2015})^\frac{1}{4}
= (5^{\log_5 2015 \cdot 4})^\frac{1}{4}
= ((5^{\log_5 2015})^4)^\frac{1}{4}
= (2015^4)^\frac{1}{4}
= \boxed{\textbf{(D)}\; 2015}</math>


==Solution 2==
==Solution 2==
Line 17: Line 11:


==Solution 3==
==Solution 3==
<math>(625^{\log_5 2015})^{\frac{1}{4}} = (625^{\frac{1}{4}})^{\log_5 2015} = 5^{\log_5 2015} = \boxed{\textbf{(D)} 2015}</math>
<math>(625^{\log_5 2015})^{\frac{1}{4}} = (625^{\frac{1}{4}})^{\log_5 2015} = 5^{\log_5 2015} = \boxed{\textbf{(D)}~2015}</math>


~ cxsmi
~ [https://artofproblemsolving.com/wiki/index.php/User:Cxsmi cxsmi]
 
==Solution 4 (Last resort)==
We note that the year number is just <math>2015</math>, so just guess <math>\boxed{\textbf{(D)} 2015}</math>.
 
~xHypotenuse
 
Easily the best solution
(yeah definetly)


== Video Solution by OmegaLearn ==
== Video Solution by OmegaLearn ==

Latest revision as of 12:36, 31 July 2025

Problem

What is the value of $(625^{\log_5 2015})^{\frac{1}{4}}$ ?

$\textbf{(A)}\; 5 \qquad\textbf{(B)}\; \sqrt[4]{2015} \qquad\textbf{(C)}\; 625 \qquad\textbf{(D)}\; 2015 \qquad\textbf{(E)}\; \sqrt[4]{5^{2015}}$

Solution 1

$(625^{\log_5 2015})^\frac{1}{4}=((5^4)^{\log_5 2015})^\frac{1}{4}=(5^{4 \cdot \log_5 2015})^\frac{1}{4}=(5^{\log_5 2015 \cdot 4})^\frac{1}{4}=((5^{\log_5 2015})^4)^\frac{1}{4}=(2015^4)^\frac{1}{4}=\boxed{\textbf{(D)}\; 2015}$

Solution 2

We can rewrite $\log_5 2015$ as as $5^x = 2015$. Thus, $625^{x \cdot \frac{1}{4}} = 5^x = \boxed{2015}.$

Solution 3

$(625^{\log_5 2015})^{\frac{1}{4}} = (625^{\frac{1}{4}})^{\log_5 2015} = 5^{\log_5 2015} = \boxed{\textbf{(D)}~2015}$

~ cxsmi

Solution 4 (Last resort)

We note that the year number is just $2015$, so just guess $\boxed{\textbf{(D)} 2015}$.

~xHypotenuse

Easily the best solution (yeah definetly)

Video Solution by OmegaLearn

https://youtu.be/RdIIEhsbZKw?t=738

~ pi_is_3.14

See Also

2015 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing