Art of Problem Solving

2011 AMC 12B Problems/Problem 20: Difference between revisions

Isabelchen (talk | contribs)
Mc413551 (talk | contribs)
 
(14 intermediate revisions by 8 users not shown)
Line 4: Line 4:


<math>\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 14\sqrt{3} \qquad \textbf{(C)}\ \frac{195}{8} \qquad \textbf{(D)}\ \frac{129\sqrt{7}}{14} \qquad \textbf{(E)}\ \frac{69\sqrt{2}}{4}</math>
<math>\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 14\sqrt{3} \qquad \textbf{(C)}\ \frac{195}{8} \qquad \textbf{(D)}\ \frac{129\sqrt{7}}{14} \qquad \textbf{(E)}\ \frac{69\sqrt{2}}{4}</math>
==Video Solution by Punxsutawney Phil==
https://www.youtube.com/watch?v=Tbzhw9fYsDI


==Solution 1 (Coordinates)==
==Solution 1 (Coordinates)==
Line 13: Line 10:
Note that if we draw the perpendicular bisector of each side, we will have the circumcenter of <math>\triangle ABC</math> which is <math>P</math>, Also, since <math>m\angle ADP = m\angle AFP = 90^\circ</math>. <math>ADPF</math> is cyclic, similarly, <math>BDPE</math> and <math>CEPF</math> are also cyclic. With this, we know that the circumcircles of <math>\triangle ADF</math>, <math>\triangle BDE</math> and <math>\triangle CEF</math> all intersect at <math>P</math>, so <math>P</math> is <math>X</math>.
Note that if we draw the perpendicular bisector of each side, we will have the circumcenter of <math>\triangle ABC</math> which is <math>P</math>, Also, since <math>m\angle ADP = m\angle AFP = 90^\circ</math>. <math>ADPF</math> is cyclic, similarly, <math>BDPE</math> and <math>CEPF</math> are also cyclic. With this, we know that the circumcircles of <math>\triangle ADF</math>, <math>\triangle BDE</math> and <math>\triangle CEF</math> all intersect at <math>P</math>, so <math>P</math> is <math>X</math>.


The question now becomes calculate the sum of distance from each vertices to the circumcenter.  
The question now becomes calculating the sum of the distance from each vertex to the circumcenter.  


We can calculate the distances with coordinate geometry. (Note that <math>XA = XB = XC</math> because <math>X</math> is the circumcenter.)
We can calculate the distances with coordinate geometry. (Note that <math>XA = XB = XC</math> because <math>X</math> is the circumcenter.)
Line 19: Line 16:
Let <math>A = (5,12)</math>, <math>B = (0,0)</math>, <math>C = (14, 0)</math>, <math>X= (x_0, y_0)</math>
Let <math>A = (5,12)</math>, <math>B = (0,0)</math>, <math>C = (14, 0)</math>, <math>X= (x_0, y_0)</math>


Then <math>X</math> is on the line <math>x = 7</math> and also the line with slope <math>-\frac{5}{12}</math> that passes through <math>(2.5, 6)</math>.  
Then <math>X</math> is on the line <math>x = 7</math> and also the line with slope <math>-\frac{5}{12}</math> that passes through <math>(2.5, 6)</math> (realize this is due to the fact that <math>XD</math> is the perpendicular bisector of <math>AB</math>).  


<math>y_0 = 6-\frac{45}{24} = \frac{33}{8}</math>
<math>y_0 = 6-\frac{45}{24} = \frac{33}{8}</math>
Line 25: Line 22:
So <math>X = (7, \frac{33}{8})</math>
So <math>X = (7, \frac{33}{8})</math>


and <math>XA +XB+XC = 3XB = 3\sqrt{7^2 + \left(\frac{33}{8}\right)^2} = 3\times\frac{65}{8}=\frac{195}{8}</math>
and <math>XA +XB+XC = 3XB = 3\sqrt{7^2 + \left(\frac{33}{8}\right)^2} = 3\times\frac{65}{8}=\boxed{\frac{195}{8}}</math>
 
Remark: the intersection of the three circles is called a Miquel point.


==Solution 2 (Algebra)==
==Solution 2 (Algebra)==
Line 42: Line 41:
<math>\Rightarrow R=\frac{65}{16} \Rightarrow XA = XB = XC = \frac{65}{8} \Rightarrow XA + XB + XC = \boxed{\frac{195}{8}}</math>.
<math>\Rightarrow R=\frac{65}{16} \Rightarrow XA = XB = XC = \frac{65}{8} \Rightarrow XA + XB + XC = \boxed{\frac{195}{8}}</math>.


==Solution 3 (Homothety)==
==Solution 3 (Dilation)==
Let <math>O</math> be the circumcenter of <math>\triangle ABC,</math> and <math>h_A</math> denote the length of the altitude from <math>A.</math> Note that a homothety centered at <math>B</math> with ratio <math>\frac{1}{2}</math> takes the circumcircle of <math>\triangle BAC</math> to the circumcircle of <math>\triangle BDE</math>. It also takes the point diametrically opposite <math>B</math> on the circumcircle of <math>\triangle BAC</math> to <math>O.</math> Therefore, <math>O</math> lies on the circumcircle of <math>\triangle BDE.</math> Similarly, it lies on the circumcircle of <math>\triangle CEF.</math> By Pythagorean triples, <math>h_A=12.</math> Finally, our answer is <cmath>3R=3\cdot \frac{abc}{4\{ABC\}}=3\cdot \frac{abc}{2ah_A}=3\cdot \frac{bc}{2h_A}=\boxed{\frac{195}{8}.}</cmath>
Let <math>O</math> be the circumcenter of <math>\triangle ABC,</math> and <math>h_A</math> denote the length of the altitude from <math>A.</math> Note that a dilation centered at <math>B</math> with ratio <math>\frac{1}{2}</math> takes the circumcircle of <math>\triangle BAC</math> to the circumcircle of <math>\triangle BDE</math>. It also takes the point diametrically opposite <math>B</math> on the circumcircle of <math>\triangle BAC</math> to <math>O.</math> Therefore, <math>O</math> lies on the circumcircle of <math>\triangle BDE.</math> Similarly, it lies on the circumcircle of <math>\triangle CEF.</math> By Pythagorean triples, <math>h_A=12.</math> Finally, our answer is <cmath>3R=3\cdot \frac{abc}{4\{ABC\}}=3\cdot \frac{abc}{2ah_A}=3\cdot \frac{bc}{2h_A}=\boxed{\frac{195}{8}}.</cmath>
 


==Solution 4 (basically Solution 1 but without coordinates)==
==Solution 4 (basically Solution 1 but without coordinates)==
Line 57: Line 55:
Since <math>ED</math> is a midline of <math>\triangle CAB,</math> we have that <math>\triangle CED \sim \triangle CAB</math> with a side length ratio of <math>1:2.</math>  
Since <math>ED</math> is a midline of <math>\triangle CAB,</math> we have that <math>\triangle CED \sim \triangle CAB</math> with a side length ratio of <math>1:2.</math>  


Consider a homothety of scale factor <math>2</math> with on <math>\triangle CED</math> with respect to point <math>C.</math> Note that this sends <math>(CEDX)</math> to <math>(ABCC')</math> with <math>CX=XC'.</math> By properties of homotheties, <math>C,X,</math> and <math>C'</math> are collinear. Similarly, we obtain that <math>BX=XB',</math> with all three points collinear. Let <math>O</math> denote the circumcenter of <math>\triangle ABC.</math> It is well-known that <math>OX \perp CC'</math> and analogously <math>OX \perp BB'.</math> However, there is only one perpendicular line to <math>OX</math> passing through <math>X,</math>, therefore, <math>O</math> coincides with <math>X.</math>
Consider a homothety of scale factor <math>2</math> with on <math>\triangle CED</math> concerning point <math>C</math>. Note that this sends <math>(CEDX)</math> to <math>(ABCC')</math> with <math>CX=XC'.</math> By properties of homotheties, <math>C,X,</math> and <math>C'</math> are collinear. Similarly, we obtain that <math>BX=XB',</math> with all three points collinear. Let <math>O</math> denote the circumcenter of <math>\triangle ABC.</math> It is well-known that <math>OX \perp CC'</math> and analogously <math>OX \perp BB'.</math> However, there is only one perpendicular line to <math>OX</math> passing through <math>X,</math>, therefore, <math>O</math> coincides with <math>X.</math>


It follows that <math>AX=BX=CX=R,</math> where <math>R</math> is the circumradius of <math>\triangle ABC,</math> and this can be computed using the formula <cmath>R=\frac{abc}{4[ABC]},</cmath> from which we quickly obtain <cmath>R=\frac{65}{8} \implies AX+BX+CX=\boxed{\frac{195}{8}}.</cmath>
It follows that <math>AX=BX=CX=R,</math> where <math>R</math> is the circumradius of <math>\triangle ABC,</math> and this can be computed using the formula <cmath>R=\frac{abc}{4[ABC]},</cmath> from which we quickly obtain <cmath>R=\frac{65}{8} \implies AX+BX+CX=\boxed{\frac{195}{8}}.</cmath>


== Solution 6 ==
== Solution 6 (Trigonometry) ==


[[File:2011AMC12B20.png|center|500px]]
[[File:2011AMC12B20.png|center|500px]]
Line 73: Line 71:
<math>\angle BXE = \angle A</math>, <math>\angle CXE = \angle A</math>
<math>\angle BXE = \angle A</math>, <math>\angle CXE = \angle A</math>


Therefore <math>\angle BXE = \angle CXE</math>, and <math>XE</math> is the angle bisector of <math>\triangle XBC</math>. By the angle bisector theorem <math>\frac{XB}{XC} = \frac{BE}{CE} = 1</math>, <math>XB = XC</math>. In a similar fashion <math>XA = XB = XC</math>.
Therefore <math>\angle BXE = \angle CXE</math>, and <math>XE</math> is the angle bisector of <math>\triangle XBC</math>. By the angle bisector theorem <math>\frac{XB}{XC} = \frac{BE}{CE} = 1</math>, <math>XB = XC</math>. In a similar fashion <math>XA = XB = XC = R</math>, where <math>R</math> is the circumcircle of <math>\triangle ABC</math>.
 
By the law of cosine, <math>\cos A = \frac{13^2 + 15^2 - 14^2}{2 \cdot 13 \cdot 15} = \frac{33}{65}</math>, <math>\sin A = \sqrt{1 - \left(\frac{33}{65}\right)^2} = \frac{56}{65}</math>
 
By the extended law of sines, <math>2R = \frac{BC}{\sin A} = \frac{14}{\frac{56}{65}} = \frac{65}{4}</math>, <math>R = \frac{65}{8}</math>
 
<math>XA + XB + XC = 3 R = \boxed{\textbf{(C) } \frac{195}{8}}</math>


By the law of cosine, <math>\cos A = \frac{13^2 + 15^2 - 14^2}{2 \cdot 13 \cdot 15} = \frac{33}{65}</math>, <math>\sin A = \sqrt{1 - (\frac{33}{65})^2} = \frac{56}{65}</math>
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]


By the extended law of sines, <math>2R = \frac{BC}{\sin A} = \frac{14}{\frac{56}{65}} = \frac{65}{4}</math>
== Solution 7 (abwabwabwa)==  


<math>XA = XB = XC = R = \frac{65}{8}</math>, where <math>R</math> is the circumcircle of <math>\triangle ABC</math>.
Claim, <math>X</math> is the circumcenter of triangle <math>\triangle{ABC}</math>.


<math>XA + XB + XC = 3 \frac{65}{8} = \boxed{\textbf{(C) } \frac{195}{8}}</math>


~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
Proof: Note that <math>\triangle{BDE}</math> and <math>\triangle{EFC}</math> are congruent. Consider the centers <math>O_1</math> and <math>O_2</math> of <math>\triangle{BDE}</math> and <math>\triangle{EFC}</math>, respectively. Let <math>B'</math> be the reflection of <math>B</math> over <math>O_1</math>, and let <math>C'</math> be the reflection of <math>C</math> over <math>O_2</math>. Since they form diameters, they must form right triangles <math>\triangle{BEB'}</math> and <math>\triangle{CEC'}</math>. However, because <math>\triangle{BDE} \cong \triangle{EFC}</math>, C' and B' are the same point. Thus, one point lies on both circumcircles, so this point is <math>X</math>. But then X lies on the perpendicular bisector of <math>BC</math>, and appyling this logic to all 3 sides, <math>X</math> must be the circumcenter.
 
Memorizing that the circumradius of a <math>13, 14, 15</math> triangle is <math>\frac{65}{8}</math>, since <math>XA=XB=XC=\frac{65}{8}</math>, <math>XA+XB+XC = \boxed{\textbf{(C) }\frac{195}{8}}</math>.
 
-skibbysiggy


== See also ==
== See also ==
{{AMC12 box|year=2011|num-b=19|num-a=21|ab=B}}
{{AMC12 box|year=2011|num-b=19|num-a=21|ab=B}}
{{MAA Notice}}
{{MAA Notice}}

Latest revision as of 19:29, 16 July 2025

Problem

Triangle $ABC$ has $AB = 13, BC = 14$, and $AC = 15$. The points $D, E$, and $F$ are the midpoints of $\overline{AB}, \overline{BC}$, and $\overline{AC}$ respectively. Let $X \neq E$ be the intersection of the circumcircles of $\triangle BDE$ and $\triangle CEF$. What is $XA + XB + XC$?

$\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 14\sqrt{3} \qquad \textbf{(C)}\ \frac{195}{8} \qquad \textbf{(D)}\ \frac{129\sqrt{7}}{14} \qquad \textbf{(E)}\ \frac{69\sqrt{2}}{4}$

Solution 1 (Coordinates)

Let us also consider the circumcircle of $\triangle ADF$.

Note that if we draw the perpendicular bisector of each side, we will have the circumcenter of $\triangle ABC$ which is $P$, Also, since $m\angle ADP = m\angle AFP = 90^\circ$. $ADPF$ is cyclic, similarly, $BDPE$ and $CEPF$ are also cyclic. With this, we know that the circumcircles of $\triangle ADF$, $\triangle BDE$ and $\triangle CEF$ all intersect at $P$, so $P$ is $X$.

The question now becomes calculating the sum of the distance from each vertex to the circumcenter.

We can calculate the distances with coordinate geometry. (Note that $XA = XB = XC$ because $X$ is the circumcenter.)

Let $A = (5,12)$, $B = (0,0)$, $C = (14, 0)$, $X= (x_0, y_0)$

Then $X$ is on the line $x = 7$ and also the line with slope $-\frac{5}{12}$ that passes through $(2.5, 6)$ (realize this is due to the fact that $XD$ is the perpendicular bisector of $AB$).

$y_0 = 6-\frac{45}{24} = \frac{33}{8}$

So $X = (7, \frac{33}{8})$

and $XA +XB+XC = 3XB = 3\sqrt{7^2 + \left(\frac{33}{8}\right)^2} = 3\times\frac{65}{8}=\boxed{\frac{195}{8}}$

Remark: the intersection of the three circles is called a Miquel point.

Solution 2 (Algebra)

Consider an additional circumcircle on $\triangle ADF$. After drawing the diagram, it is noticed that each triangle has side values: $7$, $\frac{15}{2}$, $\frac{13}{2}$. Thus they are congruent, and their respective circumcircles are.


Let $M$ & $N$ be $\triangle BDE$ & $\triangle CEF$'s circumcircles' respective centers. Since $\triangle BDE$ & $\triangle CEF$ are congruent, the distance $M$ & $N$ each are from $\overline{BC}$ are equal, so $\overline{MN} || \overline{BC}$. The angle between $\overline {MN}$ & $\overline{EX}$ is $90^{\circ}$, and since $\overline{MN} || \overline{BC}$, $\angle XEC$ is also $90^{\circ}$. $\triangle XEC$ is a right triangle inscribed in a circle, so $\overline{XC}$ must be the diameter of $N$. Using the same logic & reasoning, we could deduce that $XA$ & $XB$ are also circumdiameters.


Since the circumcircles are congruent, circumdiameters $XA$, $XB$, and $XC$ are congruent. Therefore, the solution can be found by calculating one of these circumdiameters and multiplying it by a factor of $3$. We can find the circumradius quite easily with the formula $\sqrt{(s)(s-a)(s-b)(s-c)} = \frac{abc}{4R}$, such that $s=\frac{a+b+c}{2}$ and $R$ is the circumradius. Since $s = \frac{21}{2}$:

\[\sqrt{(\frac{21}{2})(4)(3)(\frac{7}{2})} = \frac{\frac{15}{2}\cdot\frac{13}{2}\cdot 7}{4R}\]

After a few algebraic manipulations:

$\Rightarrow R=\frac{65}{16} \Rightarrow XA = XB = XC = \frac{65}{8} \Rightarrow XA + XB + XC = \boxed{\frac{195}{8}}$.

Solution 3 (Dilation)

Let $O$ be the circumcenter of $\triangle ABC,$ and $h_A$ denote the length of the altitude from $A.$ Note that a dilation centered at $B$ with ratio $\frac{1}{2}$ takes the circumcircle of $\triangle BAC$ to the circumcircle of $\triangle BDE$. It also takes the point diametrically opposite $B$ on the circumcircle of $\triangle BAC$ to $O.$ Therefore, $O$ lies on the circumcircle of $\triangle BDE.$ Similarly, it lies on the circumcircle of $\triangle CEF.$ By Pythagorean triples, $h_A=12.$ Finally, our answer is \[3R=3\cdot \frac{abc}{4\{ABC\}}=3\cdot \frac{abc}{2ah_A}=3\cdot \frac{bc}{2h_A}=\boxed{\frac{195}{8}}.\]

Solution 4 (basically Solution 1 but without coordinates)

Since Solution 1 has already proven that the circumcenter of $\triangle ABC$ coincides with $X$, we'll go from there. Note that the radius of the circumcenter of any given triangle is $\frac{a}{2\sin{A}}$, and since $b=15$ and $\sin{B}=\frac{12}{13}$, it can be easily seen that $XA = XB = XC = \frac{65}{8}$ and therefore our answer is \[3\cdot \frac{65}{8}=\boxed{\frac{195}{8}}.\]

Solution 5

Error creating thumbnail: File missing

Since $ED$ is a midline of $\triangle CAB,$ we have that $\triangle CED \sim \triangle CAB$ with a side length ratio of $1:2.$

Consider a homothety of scale factor $2$ with on $\triangle CED$ concerning point $C$. Note that this sends $(CEDX)$ to $(ABCC')$ with $CX=XC'.$ By properties of homotheties, $C,X,$ and $C'$ are collinear. Similarly, we obtain that $BX=XB',$ with all three points collinear. Let $O$ denote the circumcenter of $\triangle ABC.$ It is well-known that $OX \perp CC'$ and analogously $OX \perp BB'.$ However, there is only one perpendicular line to $OX$ passing through $X,$, therefore, $O$ coincides with $X.$

It follows that $AX=BX=CX=R,$ where $R$ is the circumradius of $\triangle ABC,$ and this can be computed using the formula \[R=\frac{abc}{4[ABC]},\] from which we quickly obtain \[R=\frac{65}{8} \implies AX+BX+CX=\boxed{\frac{195}{8}}.\]

Solution 6 (Trigonometry)

Error creating thumbnail: File missing

$\angle BXE = \angle BDE$, $\angle CXE = \angle CFE$, as the angles are on the same circle.

$\triangle BDE \sim \triangle ABC$, $\triangle CFE \sim \triangle ABC$

$\angle BDE = \angle A$, $\angle CFE = \angle A$

$\angle BXE = \angle A$, $\angle CXE = \angle A$

Therefore $\angle BXE = \angle CXE$, and $XE$ is the angle bisector of $\triangle XBC$. By the angle bisector theorem $\frac{XB}{XC} = \frac{BE}{CE} = 1$, $XB = XC$. In a similar fashion $XA = XB = XC = R$, where $R$ is the circumcircle of $\triangle ABC$.

By the law of cosine, $\cos A = \frac{13^2 + 15^2 - 14^2}{2 \cdot 13 \cdot 15} = \frac{33}{65}$, $\sin A = \sqrt{1 - \left(\frac{33}{65}\right)^2} = \frac{56}{65}$

By the extended law of sines, $2R = \frac{BC}{\sin A} = \frac{14}{\frac{56}{65}} = \frac{65}{4}$, $R = \frac{65}{8}$

$XA + XB + XC = 3 R = \boxed{\textbf{(C) } \frac{195}{8}}$

~isabelchen

Solution 7 (abwabwabwa)

Claim, $X$ is the circumcenter of triangle $\triangle{ABC}$.


Proof: Note that $\triangle{BDE}$ and $\triangle{EFC}$ are congruent. Consider the centers $O_1$ and $O_2$ of $\triangle{BDE}$ and $\triangle{EFC}$, respectively. Let $B'$ be the reflection of $B$ over $O_1$, and let $C'$ be the reflection of $C$ over $O_2$. Since they form diameters, they must form right triangles $\triangle{BEB'}$ and $\triangle{CEC'}$. However, because $\triangle{BDE} \cong \triangle{EFC}$, C' and B' are the same point. Thus, one point lies on both circumcircles, so this point is $X$. But then X lies on the perpendicular bisector of $BC$, and appyling this logic to all 3 sides, $X$ must be the circumcenter.

Memorizing that the circumradius of a $13, 14, 15$ triangle is $\frac{65}{8}$, since $XA=XB=XC=\frac{65}{8}$, $XA+XB+XC = \boxed{\textbf{(C) }\frac{195}{8}}$.

-skibbysiggy

See also

2011 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing