2019 AMC 12B Problems/Problem 25: Difference between revisions
Mathmagicops (talk | contribs) |
|||
| (28 intermediate revisions by 6 users not shown) | |||
| Line 41: | Line 41: | ||
Thus the maximum possible area of <math>ABCD</math> is <math>\boxed{\textbf{(C) }12 + 10\sqrt{3}}</math>. | Thus the maximum possible area of <math>ABCD</math> is <math>\boxed{\textbf{(C) }12 + 10\sqrt{3}}</math>. | ||
==Solution 3 (Complex Numbers)== | |||
Let <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math> correspond to the complex numbers <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math>, respectively. Then, the complex representations of the centroids are <math>(a+b+c)/3</math>, <math>(b+c+d)/3</math>, and <math>(a+c+d)/3</math>. The pairwise distances between the centroids are <math>\lvert (d-a)/3 \rvert</math>, <math>\lvert (b-a)/3 \rvert</math>, and <math>\lvert (b-d)/3 \rvert</math>, all equal. Thus, <math>\lvert (b-a)/3 \rvert=\lvert (d-a)/3 \rvert=\lvert (b-d)/3 \rvert</math>, so <math>\lvert (b-a) \rvert=\lvert (d-a) \rvert=\lvert (b-d) \rvert</math>. Hence, <math>\triangle DBA</math> is equilateral. | |||
By the Law of Cosines, | |||
<math>[ABCD]=[ABD]+[BCD]=\frac{(\sqrt{2^2+6^2-2 \cdot 2 \cdot 6 \cos(\angle BCD)})^2 \cdot \sqrt{3}}{4}+1/2 \cdot 2 \cdot 6 \sin(\angle BCD)</math>. | |||
<math>[ABCD]=10\sqrt{3}+6(\sin{\angle BCD}-\sqrt{3}\cos(\angle BCD))= 10\sqrt{3}+12\sin(\angle BCD-60^{\circ}) \le 12 + 10\sqrt{3}</math>. Thus, the maximum possible area of <math>ABCD</math> is <math>\boxed{\textbf{(C) }12 + 10\sqrt{3}}</math>. | |||
~ Leo.Euler | |||
==Solution 4 (Homothety)== | |||
Let <math>G_1, G_2</math>, and <math>G_3</math> be the centroids of <math>\triangle ABC, \triangle BCD</math>, and <math>\triangle ACD</math>, respectively, and let <math>X, Y,</math> and <math>Z</math> be the midpoints of <math>\overline{AB}, \overline{BD},</math> and <math>\overline{AD}</math>, respectively. Note that <math>G_1, G_2,</math> and <math>G_3</math> are <math>\frac{2}{3}</math> of the way from <math>C</math> to <math>X, Y,</math> and <math>Z</math>, respectively, by a well-known property of centroids. Then a homothety centered at <math>C</math> with ratio <math>\frac{3}{2}</math> maps <math>G_1, G_2,</math> and <math>G_3</math> to <math>X, Y,</math> and <math>Z</math>, respectively, implying that <math>\triangle XYZ</math> is equilateral too. But <math>\triangle XYZ</math> is the medial triangle of <math>\triangle ABD</math>, so <math>\triangle ABD</math> is also equilateral. We may finish with the methods in the solutions above. | |||
~ numberwhiz | |||
While the solutions above have attempted the problem in general, knowing the fact that <math>\triangle ABD</math> is equilateral greatly reduces the effort to find the final answer, hence I propose an alternative after this. | |||
Let <math>AB = BD = AD = x</math> and <math>\angle BCD = \theta</math>. By cosine rule on <math>\triangle BCD</math> : | |||
<cmath>x^2 = 40 - 24\cos \theta</cmath> | |||
Thus, the total area of the quadrilateral is supposedly : | |||
<cmath>\frac{\sqrt{3}}{4}(x^2) + \frac{1}{2}(2)(6)\sin \theta</cmath> | |||
<cmath>\implies \frac{\sqrt{3}}{4}(40 - 24\cos \theta) + 6\sin \theta</cmath> | |||
<cmath>\implies 6(\sin \theta - \sqrt{3}\cos \theta) + 10\sqrt{3} \geq 12 + 10\sqrt{3}</cmath> | |||
Where the inequality comes from a common trigonometric identity, <math>(\sin \theta - \sqrt{3}\cos \theta) \geq \sqrt{1^2 + \big(\sqrt{3}\big)^2} = 2.</math> | |||
~ SouradipClash_03 | |||
==Video Solution by MOP 2024== | |||
https://youtu.be/c26N2w2MMQE | |||
~r00tsOfUnity | |||
===Solution 5=== | |||
Let <math>X, Y, Z</math> be the centroids of <math>\triangle ABC, \triangle BCD, \triangle ACD</math> respectively, then | |||
<math>XZ//BD</math>, since <math>EX=\frac13 EB, EZ=\frac13 ED</math>, | |||
<math>XY//GE</math>, since <math>BX=\frac23BE, BY=\frac23BG, EG//AD</math> by midsegment theorem, so <math>XY//AD</math> | |||
Similarly, <math>YZ//AB</math>, | |||
So <math>\triangle ABD</math> is an equilateral triangle | |||
Assume <math>\alpha=\angle BCD</math>, then <math>BD^2=BC^2+CD^2-2\cdot BC\cdot CD\cos \alpha=40-24\cos\alpha</math>, the area | |||
<math>[ABCD]=[ABD]+[BCD]=\frac{\sqrt3}4 BD^2+\frac12\cdot BC\cdot CD\sin\alpha=</math> | |||
<math>10\sqrt3+6(\sin\alpha-\sqrt3\cos \alpha)=10\sqrt3+12\sin(\alpha-60^\circ)</math> | |||
The maximal value happens when <math>\sin(\alpha-60^\circ)=1</math>, and the value is <math>10\sqrt3+12</math>, and the answer is <math>\boxed{\textbf{(C)} 12+10\sqrt3}</math>. | |||
<asy> | |||
import graph; size(11.42cm); | |||
real labelscalefactor = 0.5; /* changes label-to-point distance */ | |||
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | |||
pen dotstyle = black; /* point style */ | |||
real xmin = -1.58, xmax = 9.84, ymin = -7.74, ymax = 8.48; /* image dimensions */ | |||
/* draw figures */ | |||
draw((0.,0.)--(4.,0.), linewidth(2.)); | |||
draw((2.,3.4641016151377544)--(4.,0.), linewidth(2.)); | |||
draw((0.,0.)--(2.,3.4641016151377544), linewidth(2.)); | |||
draw((4.,0.)--(5.,1.), linewidth(2.)); | |||
draw((5.,1.)--(2.,3.4641016151377544), linewidth(2.)); | |||
draw((0.,0.)--(5.,1.), linewidth(2.)); | |||
draw((2.5,0.5)--(4.,0.), linewidth(2.)); | |||
draw((4.,0.)--(3.5,2.232050807568877), linewidth(2.)); | |||
draw((2.,3.4641016151377544)--(2.5,0.5), linewidth(2.)); | |||
draw((0.,0.)--(3.5,2.232050807568877), linewidth(2.)); | |||
draw((0.,0.)--(4.5,0.5), linewidth(2.)); | |||
draw((2.,3.4641016151377544)--(4.5,0.5), linewidth(2.)); | |||
draw((2.333333333333333,1.4880338717125845)--(3.,0.3333333333333333), linewidth(2.) + linetype("2 2")); | |||
draw((3.666666666666666,1.488033871712585)--(3.,0.3333333333333333), linewidth(2.) + linetype("2 2")); | |||
/* dots and labels */ | |||
dot((0.,0.),dotstyle); | |||
label("$A$", (-0.2,-0.18), NE * labelscalefactor); | |||
dot((4.,0.),dotstyle); | |||
label("$B$", (3.98,-0.3), NE * labelscalefactor); | |||
dot((2.,3.4641016151377544),dotstyle); | |||
label("$D$", (1.86,3.62), NE * labelscalefactor); | |||
dot((5.,1.),dotstyle); | |||
label("$C$", (5.06,0.92), NE * labelscalefactor); | |||
dot((2.5,0.5),linewidth(4.pt) + dotstyle); | |||
label("$E$", (2.2,0.5), NE * labelscalefactor); | |||
dot((4.5,0.5),linewidth(4.pt) + dotstyle); | |||
label("$F$", (4.52,0.3), NE * labelscalefactor); | |||
dot((3.5,2.232050807568877),linewidth(4.pt) + dotstyle); | |||
label("$G$", (3.58,2.4), NE * labelscalefactor); | |||
dot((2.333333333333333,1.4880338717125845),linewidth(4.pt) + dotstyle); | |||
label("$Z$", (2.06,1.44), NE * labelscalefactor); | |||
dot((3.,0.3333333333333333),linewidth(4.pt) + dotstyle); | |||
label("$X$", (2.92,0.04), NE * labelscalefactor); | |||
dot((3.666666666666666,1.488033871712585),linewidth(4.pt) + dotstyle); | |||
label("$Y$", (3.76,1.5), NE * labelscalefactor); | |||
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | |||
</asy> | |||
~szhangmath | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2019|ab=B|num-b=24|after=Last Problem}} | {{AMC12 box|year=2019|ab=B|num-b=24|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 00:48, 14 July 2025
Problem
Let
be a convex quadrilateral with
and
Suppose that the centroids of
and
form the vertices of an equilateral triangle. What is the maximum possible value of the area of
?
Solution 1 (vectors)
Place an origin at
, and assign position vectors of
and
. Since
is not parallel to
, vectors
and
are linearly independent, so we can write
for some constants
and
. Now, recall that the centroid of a triangle
has position vector
.
Thus the centroid of
is
; the centroid of
is
; and the centroid of
is
.
Hence
,
, and
. For
to be equilateral, we need
. Further,
. Hence we have
, so
is equilateral.
Now let the side length of
be
, and let
. By the Law of Cosines in
, we have
. Since
is equilateral, its area is
, while the area of
is
. Thus the total area of
is
, where in the last step we used the subtraction formula for
. Alternatively, we can use calculus to find the local maximum. Observe that
has maximum value
when e.g.
, which is a valid configuration, so the maximum area is
.
Solution 2
Let
,
,
be the centroids of
,
, and
respectively, and let
be the midpoint of
.
,
, and
are collinear due to well-known properties of the centroid. Likewise,
,
, and
are collinear as well. Because (as is also well-known)
and
, we have
. This implies that
is parallel to
, and in terms of lengths,
. (SAS Similarity)
We can apply the same argument to the pair of triangles
and
, concluding that
is parallel to
and
. Because
(due to the triangle being equilateral),
, and the pair of parallel lines preserve the
angle, meaning
. Therefore
is equilateral.
At this point, we can finish as in Solution 1, or, to avoid using trigonometry, we can continue as follows:
Let
, where
due to the Triangle Inequality in
. By breaking the quadrilateral into
and
, we can create an expression for the area of
. We use the formula for the area of an equilateral triangle given its side length to find the area of
and Heron's formula to find the area of
.
After simplifying,
Substituting
, the expression becomes
We can ignore the
for now and focus on
.
By the Cauchy-Schwarz inequality,
The RHS simplifies to
, meaning the maximum value of
is
.
Thus the maximum possible area of
is
.
Solution 3 (Complex Numbers)
Let
,
,
, and
correspond to the complex numbers
,
,
, and
, respectively. Then, the complex representations of the centroids are
,
, and
. The pairwise distances between the centroids are
,
, and
, all equal. Thus,
, so
. Hence,
is equilateral.
By the Law of Cosines,
.
. Thus, the maximum possible area of
is
.
~ Leo.Euler
Solution 4 (Homothety)
Let
, and
be the centroids of
, and
, respectively, and let
and
be the midpoints of
and
, respectively. Note that
and
are
of the way from
to
and
, respectively, by a well-known property of centroids. Then a homothety centered at
with ratio
maps
and
to
and
, respectively, implying that
is equilateral too. But
is the medial triangle of
, so
is also equilateral. We may finish with the methods in the solutions above.
~ numberwhiz
While the solutions above have attempted the problem in general, knowing the fact that
is equilateral greatly reduces the effort to find the final answer, hence I propose an alternative after this.
Let
and
. By cosine rule on
:
Thus, the total area of the quadrilateral is supposedly :
Where the inequality comes from a common trigonometric identity,
~ SouradipClash_03
Video Solution by MOP 2024
~r00tsOfUnity
Solution 5
Let
be the centroids of
respectively, then
, since
,
, since
by midsegment theorem, so
![]()
Similarly,,
Sois an equilateral triangle
Assume, then
, the area
The maximal value happens when, and the value is
, and the answer is
.
~szhangmath
See Also
| 2019 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 24 |
Followed by Last Problem |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing