1993 USAMO Problems/Problem 2: Difference between revisions
| (10 intermediate revisions by 9 users not shown) | |||
| Line 3: | Line 3: | ||
Let <math>ABCD</math> be a convex quadrilateral such that diagonals <math>AC</math> and <math>BD</math> intersect at right angles, and let <math>E</math> be their intersection. Prove that the reflections of <math>E</math> across <math>AB</math>, <math>BC</math>, <math>CD</math>, <math>DA</math> are concyclic. | Let <math>ABCD</math> be a convex quadrilateral such that diagonals <math>AC</math> and <math>BD</math> intersect at right angles, and let <math>E</math> be their intersection. Prove that the reflections of <math>E</math> across <math>AB</math>, <math>BC</math>, <math>CD</math>, <math>DA</math> are concyclic. | ||
== Solution == | == Solution 1 == | ||
===Diagram=== | ===Diagram=== | ||
<center><table border=1><tr><td><asy> | <center><table border=1><tr><td><asy> | ||
| Line 12: | Line 12: | ||
label('$E$',E,N); | label('$E$',E,N); | ||
pair A,B,C,D; | pair A,B,C,D; | ||
A=( | A=(9,0); | ||
B=(0,13); | B=(0,13); | ||
C=(-13,0); | C=(-13,0); | ||
| Line 39: | Line 39: | ||
label('$Z$',Z, SW); | label('$Z$',Z, SW); | ||
label('$W$',W,SE); | label('$W$',W,SE); | ||
dot(A); | |||
dot(B); | |||
dot(C); | |||
dot(D); | |||
dot(E); | |||
dot(W); | |||
dot(X); | |||
dot(Y); | |||
dot(Z); | |||
</asy></td></tr></table></center><br/> | </asy></td></tr></table></center><br/> | ||
===Work=== | ===Work=== | ||
Let <math>X</math>, <math>Y</math>, <math>Z</math>, <math>W</math> be the foot of the | Let <math>X</math>, <math>Y</math>, <math>Z</math>, <math>W</math> be the foot of the altitude from point <math>E</math> of <math>\triangle AEB</math>, <math>\triangle BEC</math>, <math>\triangle CED</math>, <math>\triangle DEA</math>. | ||
Note that reflection of <math>E</math> over the | Note that reflection of <math>E</math> over all the points of <math>XYZW</math> is similar to <math>XYZW</math> with a scale of <math>2</math> with center <math>E</math>. Thus, if <math>XYZW</math> is cyclic, then the reflections are cyclic. | ||
<br/> | <br/> | ||
| Line 54: | Line 64: | ||
Similarly <math>\angle EWZ\cong \angle EDC</math>, <math>\angle EYX\cong \angle EBA</math>, <math>\angle EYZ\cong \angle ECD</math>. | Similarly <math>\angle EWZ\cong \angle EDC</math>, <math>\angle EYX\cong \angle EBA</math>, <math>\angle EYZ\cong \angle ECD</math>. | ||
<br/>Futhermore, <math>m\angle XYZ+m\angle XWZ= m\angle EWX+m\angle EYX+m\angle EYZ+m\angle EWZ=360^\circ-m\angle CED-m\angle AEB=180^\circ</math>. | <br/>Futhermore, <math>m\angle XYZ+m\angle XWZ= m\angle EWX+m\angle EYX+m\angle EYZ+m\angle EWZ=</math><math>360^\circ-m\angle CED-m\angle AEB=180^\circ</math>. | ||
<br/> | <br/> | ||
| Line 61: | Line 71: | ||
<P align="right"><math>\mathbb{Q.E.D}</math></P> | <P align="right"><math>\mathbb{Q.E.D}</math></P> | ||
== | == Solution 2 == | ||
{{USAMO box|year=1993|num-b= | Suppose the reflection of E over AB is W, and similarly define X, Y, and Z. | ||
<math>\bigtriangleup BEA \cong \bigtriangleup BWA</math> by reflection gives <math>BE = BW</math> | |||
<math>\bigtriangleup BEC \cong \bigtriangleup BXC</math> by reflection gives <math>BE = BX</math> | |||
These two tell us that E, W, and X belong to a circle with center B. | |||
Similarly, we can get that: | |||
E, Z, and W belong to a circle with center A, | |||
E, X, and Y belong to a circle with center C, | |||
E, Y, and Z belong to a circle with center D. | |||
To prove that W, X, Y, Z are concyclic, we want to prove <math>\angle XWZ + \angle XYZ = 180^o</math> | |||
<math>\angle XWZ + \angle XYZ = \angle XWE + \angle EWZ + \angle XYE + \angle EYZ</math> | |||
<math> = \frac{1}{2} \angle XBE + \frac{1}{2} \angle EAZ + \frac{1}{2} \angle XCE + \frac{1}{2} \angle EDZ</math> | |||
<math> = \frac{1}{2} (\angle XBE + \angle XCE) + \frac{1}{2} (\angle EAZ + \angle EDZ)</math> | |||
<math>\angle AED = 90^o</math> and <math>\angle AED = \angle AZD</math> tells us that <math>\angle EAZ + \angle EDZ = 180^o</math> | |||
Similarly, <math>\angle XBE + \angle XCE = 180^o</math> | |||
Thus, <math>\angle XWZ + \angle XYZ = \frac{1}{2} \cdot 180^o + \frac{1}{2} \cdot 180^o = 180^o</math>, and we are done. | |||
-- Lucas.xue (someone pls help with a diagram) | |||
==Solution 3== | |||
E lies on the isoptic cubic of ABCD, so it has an isogonal conjugate in ABCD. | |||
== See Also == | |||
{{USAMO box|year=1993|num-b=1|num-a=3}} | |||
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=356413#p356413 Discussion on AoPS/MathLinks] | * [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=356413#p356413 Discussion on AoPS/MathLinks] | ||
{{MAA Notice}} | |||
[[Category:Olympiad Geometry Problems]] | |||
Latest revision as of 15:38, 10 July 2025
Problem 2
Let
be a convex quadrilateral such that diagonals
and
intersect at right angles, and let
be their intersection. Prove that the reflections of
across
,
,
,
are concyclic.
Solution 1
Diagram
![]() |
Work
Let
,
,
,
be the foot of the altitude from point
of
,
,
,
.
Note that reflection of
over all the points of
is similar to
with a scale of
with center
. Thus, if
is cyclic, then the reflections are cyclic.
is right angle and so is
. Thus,
is cyclic with
being the diameter of the circumcircle.
Follow that,
because they inscribe the same angle.
Similarly
,
,
.
Futhermore, ![]()
.
Thus,
and
are supplementary and follows that,
is cyclic.
![]()
Solution 2
Suppose the reflection of E over AB is W, and similarly define X, Y, and Z.
by reflection gives
by reflection gives
These two tell us that E, W, and X belong to a circle with center B.
Similarly, we can get that:
E, Z, and W belong to a circle with center A,
E, X, and Y belong to a circle with center C,
E, Y, and Z belong to a circle with center D.
To prove that W, X, Y, Z are concyclic, we want to prove
and
tells us that
Similarly,
Thus,
, and we are done.
-- Lucas.xue (someone pls help with a diagram)
Solution 3
E lies on the isoptic cubic of ABCD, so it has an isogonal conjugate in ABCD.
See Also
| 1993 USAMO (Problems • Resources) | ||
| Preceded by Problem 1 |
Followed by Problem 3 | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing
![[asy] import olympiad; defaultpen(0.8pt+fontsize(12pt)); pair E; E=(0,0); label('$E$',E,N); pair A,B,C,D; A=(9,0); B=(0,13); C=(-13,0); D=(0,-11); draw(A--B--C--D--cycle,blue); label('$A$',A,E); label('$B$',B,N); label('$C$',C,W); label('$D$',D,S); pair T,R,S,Q; T=reflect(A, B)*E; R=reflect(C, B)*E; S=reflect(C, D)*E; Q=reflect(A, D)*E; pair W,X,Y,Z; W=extension(A,D,E,Q); X=extension(A,B,E,T); Y=extension(C,B,E,R); Z=extension(C,D,E,S); draw(W--X--Y--Z--cycle,red); label('$X$',X,NE); label('$Y$',Y,NW); label('$Z$',Z, SW); label('$W$',W,SE); dot(A); dot(B); dot(C); dot(D); dot(E); dot(W); dot(X); dot(Y); dot(Z); [/asy]](http://latex.artofproblemsolving.com/9/4/7/9473b7f20bc174a31785078c8dfa033ce8b3be79.png)