1993 USAMO Problems/Problem 2: Difference between revisions
Solution i used for Otis application, found it was pretty trivial |
|||
| (3 intermediate revisions by 3 users not shown) | |||
| Line 12: | Line 12: | ||
label('$E$',E,N); | label('$E$',E,N); | ||
pair A,B,C,D; | pair A,B,C,D; | ||
A=( | A=(9,0); | ||
B=(0,13); | B=(0,13); | ||
C=(-13,0); | C=(-13,0); | ||
| Line 39: | Line 39: | ||
label('$Z$',Z, SW); | label('$Z$',Z, SW); | ||
label('$W$',W,SE); | label('$W$',W,SE); | ||
dot(A); | |||
dot(B); | |||
dot(C); | |||
dot(D); | |||
dot(E); | |||
dot(W); | |||
dot(X); | |||
dot(Y); | |||
dot(Z); | |||
</asy></td></tr></table></center><br/> | </asy></td></tr></table></center><br/> | ||
| Line 63: | Line 73: | ||
== Solution 2 == | == Solution 2 == | ||
Suppose the reflection of E over AB is W, and similarly define X, Y, and Z. | Suppose the reflection of E over AB is W, and similarly define X, Y, and Z. | ||
<math>\bigtriangleup BEA \cong \bigtriangleup BWA</math> by reflection gives <math>BE = BW</math> | <math>\bigtriangleup BEA \cong \bigtriangleup BWA</math> by reflection gives <math>BE = BW</math> | ||
<math>\bigtriangleup BEC \cong \bigtriangleup BXC</math> by reflection gives <math>BE = BX</math> | <math>\bigtriangleup BEC \cong \bigtriangleup BXC</math> by reflection gives <math>BE = BX</math> | ||
These two tell us that E, W, and X belong to a circle with center B. | These two tell us that E, W, and X belong to a circle with center B. | ||
Similarly, we can get that: | Similarly, we can get that: | ||
E, Z, and W belong to a circle with center A, | E, Z, and W belong to a circle with center A, | ||
E, X, and Y belong to a circle with center C, | E, X, and Y belong to a circle with center C, | ||
E, Y, and Z belong to a circle with center D. | E, Y, and Z belong to a circle with center D. | ||
To prove that W, X, Y, Z are concyclic, we want to prove <math>\angle XWZ + \angle XYZ = 180^o</math> | To prove that W, X, Y, Z are concyclic, we want to prove <math>\angle XWZ + \angle XYZ = 180^o</math> | ||
<math>\angle XWZ + \angle XYZ = \angle XWE + \angle EWZ + \angle XYE + \angle EYZ</math> | <math>\angle XWZ + \angle XYZ = \angle XWE + \angle EWZ + \angle XYE + \angle EYZ</math> | ||
<math> = \frac{1}{2} \angle XBE + \frac{1}{2} \angle EAZ + \frac{1}{2} \angle XCE + \frac{1}{2} \angle EDZ</math> | <math> = \frac{1}{2} \angle XBE + \frac{1}{2} \angle EAZ + \frac{1}{2} \angle XCE + \frac{1}{2} \angle EDZ</math> | ||
<math> = \frac{1}{2} (\angle XBE + \angle XCE) + \frac{1}{2} (\angle EAZ + \angle EDZ)</math> | <math> = \frac{1}{2} (\angle XBE + \angle XCE) + \frac{1}{2} (\angle EAZ + \angle EDZ)</math> | ||
<math>\angle AED = 90^o</math> and <math>\angle AED = \angle AZD</math> tells us that <math>\angle EAZ + \angle EDZ = 180^o</math> | <math>\angle AED = 90^o</math> and <math>\angle AED = \angle AZD</math> tells us that <math>\angle EAZ + \angle EDZ = 180^o</math> | ||
Similarly, <math>\angle XBE + \angle XCE = 180^o</math> | Similarly, <math>\angle XBE + \angle XCE = 180^o</math> | ||
Thus, <math>\angle XWZ + \angle XYZ = \frac{1}{2} \cdot 180^o + \frac{1}{2} \cdot 180^o = 180^o</math>, and we are done. | Thus, <math>\angle XWZ + \angle XYZ = \frac{1}{2} \cdot 180^o + \frac{1}{2} \cdot 180^o = 180^o</math>, and we are done. | ||
-- Lucas.xue (someone pls help with a diagram) | -- Lucas.xue (someone pls help with a diagram) | ||
==Solution 3== | |||
E lies on the isoptic cubic of ABCD, so it has an isogonal conjugate in ABCD. | |||
Latest revision as of 15:38, 10 July 2025
Problem 2
Let
be a convex quadrilateral such that diagonals
and
intersect at right angles, and let
be their intersection. Prove that the reflections of
across
,
,
,
are concyclic.
Solution 1
Diagram
![]() |
Work
Let
,
,
,
be the foot of the altitude from point
of
,
,
,
.
Note that reflection of
over all the points of
is similar to
with a scale of
with center
. Thus, if
is cyclic, then the reflections are cyclic.
is right angle and so is
. Thus,
is cyclic with
being the diameter of the circumcircle.
Follow that,
because they inscribe the same angle.
Similarly
,
,
.
Futhermore, ![]()
.
Thus,
and
are supplementary and follows that,
is cyclic.
![]()
Solution 2
Suppose the reflection of E over AB is W, and similarly define X, Y, and Z.
by reflection gives
by reflection gives
These two tell us that E, W, and X belong to a circle with center B.
Similarly, we can get that:
E, Z, and W belong to a circle with center A,
E, X, and Y belong to a circle with center C,
E, Y, and Z belong to a circle with center D.
To prove that W, X, Y, Z are concyclic, we want to prove
and
tells us that
Similarly,
Thus,
, and we are done.
-- Lucas.xue (someone pls help with a diagram)
Solution 3
E lies on the isoptic cubic of ABCD, so it has an isogonal conjugate in ABCD.
See Also
| 1993 USAMO (Problems • Resources) | ||
| Preceded by Problem 1 |
Followed by Problem 3 | |
| 1 • 2 • 3 • 4 • 5 | ||
| All USAMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing
![[asy] import olympiad; defaultpen(0.8pt+fontsize(12pt)); pair E; E=(0,0); label('$E$',E,N); pair A,B,C,D; A=(9,0); B=(0,13); C=(-13,0); D=(0,-11); draw(A--B--C--D--cycle,blue); label('$A$',A,E); label('$B$',B,N); label('$C$',C,W); label('$D$',D,S); pair T,R,S,Q; T=reflect(A, B)*E; R=reflect(C, B)*E; S=reflect(C, D)*E; Q=reflect(A, D)*E; pair W,X,Y,Z; W=extension(A,D,E,Q); X=extension(A,B,E,T); Y=extension(C,B,E,R); Z=extension(C,D,E,S); draw(W--X--Y--Z--cycle,red); label('$X$',X,NE); label('$Y$',Y,NW); label('$Z$',Z, SW); label('$W$',W,SE); dot(A); dot(B); dot(C); dot(D); dot(E); dot(W); dot(X); dot(Y); dot(Z); [/asy]](http://latex.artofproblemsolving.com/9/4/7/9473b7f20bc174a31785078c8dfa033ce8b3be79.png)