Art of Problem Solving

2021 Fall AMC 12A Problems/Problem 6: Difference between revisions

Pog (talk | contribs)
No edit summary
Pomfun (talk | contribs)
m Video was no longer available
 
(29 intermediate revisions by 8 users not shown)
Line 28: Line 28:
<math>\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174</math>
<math>\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174</math>


==Solution==
==Solution 1==
By angle subtraction, we have <math>\angle ADE = 360^\circ - \angle ADC - \angle CDE = 160^\circ.</math> Note that <math>\triangle DEF</math> is isosceles, so <math>\angle DFE = \frac{180^\circ - \angle ADE}{2}=10^\circ.</math> Finally, we get <math>\angle AFE = 180^\circ - \angle DFE = \boxed{\textbf{(D) }170}</math> degrees.
By angle subtraction, we have <math>\angle ADE = 360^\circ - \angle ADC - \angle CDE = 160^\circ.</math> Note that <math>\triangle DEF</math> is isosceles, so <math>\angle DFE = \frac{180^\circ - \angle ADE}{2}=10^\circ.</math> Finally, we get <math>\angle AFE = 180^\circ - \angle DFE = \boxed{\textbf{(D) }170}</math> degrees.


~MRENTHUSIASM ~[[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]]
~MRENTHUSIASM ~[[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]]
==Solution 2 (Extension)==
We can extend <math>\overline{AD}</math> to <math>G</math>, making <math>\angle CDG</math> a right angle. It follows that <math>\angle GDE</math> is <math>110^\circ - 90^\circ = 20^\circ</math>, as shown below.
<asy>
size(6cm);
pair A = (0,10);
label("$A$", A, N);
pair B = (0,0);
label("$B$", B, S);
pair C = (10,0);
label("$C$", C, S);
pair D = (10,10);
label("$D$", D, SW);
pair EE = (15,11.8);
label("$E$", EE, N);
pair F = (3,10);
label("$F$", F, N);
pair G = (15,10);
label("$G$", G, E);
filldraw(D--arc(D,2.5,270,380)--cycle,lightgray);
dot(A^^B^^C^^D^^EE^^F^^G);
draw(A--B--C--D--G--cycle);
draw(D--EE--F--cycle);
</asy>
Since <math>\angle DFE = \angle DEF</math>, we see that <math>\angle DFE = \angle DEF = \frac{20}{2} = 10^\circ</math>. Thus, <math>\angle AFE = 180^\circ - 10^\circ = \boxed{\textbf{(D)} ~170}</math> degrees.
~MrThinker
==Video Solution (Simple and Quick)==
https://youtu.be/cBLyn2HZ5YY
~Education, the Study of Everything
==Video Solution by TheBeautyofMath==
for AMC 10: https://youtu.be/ycRZHCOKTVk?t=232
for AMC 12: https://youtu.be/wlDlByKI7A8
~IceMatrix
==Video Solution by WhyMath==
https://youtu.be/9nUZhyhi9_o
~savannahsolver
==Video Solution by HS Competition Academy==
https://youtu.be/l3nnd-eWOI0
~Charles3829
==Video Solution==
https://youtu.be/T4NhPER6SrM
~Lucas


==See Also==
==See Also==

Latest revision as of 13:45, 1 July 2025

The following problem is from both the 2021 Fall AMC 10A #7 and 2021 Fall AMC 12A #6, so both problems redirect to this page.

Problem

As shown in the figure below, point $E$ lies on the opposite half-plane determined by line $CD$ from point $A$ so that $\angle CDE = 110^\circ$. Point $F$ lies on $\overline{AD}$ so that $DE=DF$, and $ABCD$ is a square. What is the degree measure of $\angle AFE$?

[asy] size(6cm); pair A = (0,10); label("$A$", A, N); pair B = (0,0); label("$B$", B, S); pair C = (10,0); label("$C$", C, S); pair D = (10,10); label("$D$", D, SW); pair EE = (15,11.8); label("$E$", EE, N); pair F = (3,10); label("$F$", F, N); filldraw(D--arc(D,2.5,270,380)--cycle,lightgray); dot(A^^B^^C^^D^^EE^^F); draw(A--B--C--D--cycle); draw(D--EE--F--cycle); label("$110^\circ$", (15,9), SW); [/asy]

$\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174$

Solution 1

By angle subtraction, we have $\angle ADE = 360^\circ - \angle ADC - \angle CDE = 160^\circ.$ Note that $\triangle DEF$ is isosceles, so $\angle DFE = \frac{180^\circ - \angle ADE}{2}=10^\circ.$ Finally, we get $\angle AFE = 180^\circ - \angle DFE = \boxed{\textbf{(D) }170}$ degrees.

~MRENTHUSIASM ~Aops-g5-gethsemanea2

Solution 2 (Extension)

We can extend $\overline{AD}$ to $G$, making $\angle CDG$ a right angle. It follows that $\angle GDE$ is $110^\circ - 90^\circ = 20^\circ$, as shown below. [asy] size(6cm); pair A = (0,10); label("$A$", A, N); pair B = (0,0); label("$B$", B, S); pair C = (10,0); label("$C$", C, S); pair D = (10,10); label("$D$", D, SW); pair EE = (15,11.8); label("$E$", EE, N); pair F = (3,10); label("$F$", F, N); pair G = (15,10); label("$G$", G, E); filldraw(D--arc(D,2.5,270,380)--cycle,lightgray); dot(A^^B^^C^^D^^EE^^F^^G); draw(A--B--C--D--G--cycle); draw(D--EE--F--cycle); [/asy] Since $\angle DFE = \angle DEF$, we see that $\angle DFE = \angle DEF = \frac{20}{2} = 10^\circ$. Thus, $\angle AFE = 180^\circ - 10^\circ = \boxed{\textbf{(D)} ~170}$ degrees.

~MrThinker

Video Solution (Simple and Quick)

https://youtu.be/cBLyn2HZ5YY

~Education, the Study of Everything


Video Solution by TheBeautyofMath

for AMC 10: https://youtu.be/ycRZHCOKTVk?t=232

for AMC 12: https://youtu.be/wlDlByKI7A8

~IceMatrix

Video Solution by WhyMath

https://youtu.be/9nUZhyhi9_o

~savannahsolver

Video Solution by HS Competition Academy

https://youtu.be/l3nnd-eWOI0

~Charles3829

Video Solution

https://youtu.be/T4NhPER6SrM

~Lucas

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing