Art of Problem Solving

2018 AMC 8 Problems/Problem 2: Difference between revisions

Nezha33 (talk | contribs)
Aoum (talk | contribs)
 
(11 intermediate revisions by 9 users not shown)
Line 1: Line 1:
==Problem 2==
==Problem==
What is the value of the product<cmath>\left(1+\frac{1}{1}\right)\cdot\left(1+\frac{1}{2}\right)\cdot\left(1+\frac{1}{3}\right)\cdot\left(1+\frac{1}{4}\right)\cdot\left(1+\frac{1}{5}\right)\cdot\left(1+\frac{1}{6}\right)?</cmath>
What is the value of the product
 
<cmath>\left(1+\frac{1}{1}\right)\cdot\left(1+\frac{1}{2}\right)\cdot\left(1+\frac{1}{3}\right)\cdot\left(1+\frac{1}{4}\right)\cdot\left(1+\frac{1}{5}\right)\cdot\left(1+\frac{1}{6}\right)?</cmath>


<math>\textbf{(A) }\frac{7}{6}\qquad\textbf{(B) }\frac{4}{3}\qquad\textbf{(C) }\frac{7}{2}\qquad\textbf{(D) }7\qquad\textbf{(E) }8</math>
<math>\textbf{(A) }\frac{7}{6}\qquad\textbf{(B) }\frac{4}{3}\qquad\textbf{(C) }\frac{7}{2}\qquad\textbf{(D) }7\qquad\textbf{(E) }8</math>


==Solution==
==Solution==
By adding up the numbers in each of the 6 parentheses, we have:  
By adding up the numbers in each of the <math>6</math> parentheses, we get:  


<math>\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot \frac{6}{5} \cdot \frac{7}{6}</math>.
<math>\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot \frac{6}{5} \cdot \frac{7}{6}</math>.


Using telescoping, most of the terms cancel out diagonally. We are left with <math>\frac{7}{1}</math> which is equivalent to <math>7</math>. Thus the answer would be <math>\boxed{\textbf{(D) }7}</math>.
Using telescoping, most of the terms cancel out diagonally. We are left with <math>\frac{7}{1}</math> which is equivalent to <math>7</math>. Thus, the answer would be <math>\boxed{\textbf{(D) }7}</math>.
 
Also, you can also make the fractions <math>\frac{7!}{6!}</math>, which also yields <math>\boxed{\textbf{(D)}7}</math>
 
== Video Solution (CRITICAL THINKING!!!)==
https://youtu.be/OFsrMjvR950
 
~Education, the Study of Everything
 
==Video Solution==
https://youtu.be/OeaCROQV4j4
 
~savannahsolver
 
==Video Solution by OmegaLearn==
https://youtu.be/TkZvMa30Juo?t=3213
 
~ pi_is_3.14
 


==See also==
==See also==
Line 15: Line 35:


{{MAA Notice}}
{{MAA Notice}}
[[Category:Introductory Algebra Problems]]

Latest revision as of 12:07, 6 June 2025

Problem

What is the value of the product

\[\left(1+\frac{1}{1}\right)\cdot\left(1+\frac{1}{2}\right)\cdot\left(1+\frac{1}{3}\right)\cdot\left(1+\frac{1}{4}\right)\cdot\left(1+\frac{1}{5}\right)\cdot\left(1+\frac{1}{6}\right)?\]

$\textbf{(A) }\frac{7}{6}\qquad\textbf{(B) }\frac{4}{3}\qquad\textbf{(C) }\frac{7}{2}\qquad\textbf{(D) }7\qquad\textbf{(E) }8$

Solution

By adding up the numbers in each of the $6$ parentheses, we get:

$\frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \cdot \frac{6}{5} \cdot \frac{7}{6}$.

Using telescoping, most of the terms cancel out diagonally. We are left with $\frac{7}{1}$ which is equivalent to $7$. Thus, the answer would be $\boxed{\textbf{(D) }7}$.

Also, you can also make the fractions $\frac{7!}{6!}$, which also yields $\boxed{\textbf{(D)}7}$

Video Solution (CRITICAL THINKING!!!)

https://youtu.be/OFsrMjvR950

~Education, the Study of Everything

Video Solution

https://youtu.be/OeaCROQV4j4

~savannahsolver

Video Solution by OmegaLearn

https://youtu.be/TkZvMa30Juo?t=3213

~ pi_is_3.14


See also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing