Art of Problem Solving
During AMC 10A/12A testing, the AoPS Wiki is in read-only mode and no edits can be made.

2022 AMC 8 Problems/Problem 14: Difference between revisions

Pog (talk | contribs)
Aoum (talk | contribs)
 
(10 intermediate revisions by 10 users not shown)
Line 1: Line 1:
==Problem==
==Problem==


In how many ways can the letters in BEEKEEPER be rearranged so that two or more Es do not appear together?
In how many ways can the letters in <math>\textbf{BEEKEEPER}</math> be rearranged so that two or more <math>\textbf{E}</math>s do not appear together?


<math>\textbf{(A) } 1 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 24 \qquad \textbf{(E) } 120</math>
<math>\textbf{(A) } 1 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 24 \qquad \textbf{(E) } 120</math>
Line 11: Line 11:


~MRENTHUSIASM
~MRENTHUSIASM
==Video Solution (A Clever Explanation You’ll Get Instantly)==
https://youtu.be/tYWp6fcUAik?si=V8hv_zOn_zYOi9E5&t=1740
~hsnacademy
==Video Solution by Math-X (First understand the problem!!!)==
https://youtu.be/oUEa7AjMF2A?si=sMxdry7U6U_2bPZH&t=2168
~Math-X
==Video Solution (CREATIVE THINKING!!!)==
https://youtu.be/419vsFnrGeY
~Education, the Study of Everything
==Video Solution==
https://youtu.be/Ij9pAy6tQSg?t=1222
~Interstigation
==Video Solution==
https://youtu.be/p29Fe2dLGs8?t=212
~STEMbreezy
==Video Solution==
https://youtu.be/NmfnoSn3CDg
~savannahsolver
==Video Solution==
https://youtu.be/c6shf8oma5c
~harungurcan
==Video Solution by Dr. David==
https://youtu.be/iqjSY6kiEOk


==See Also==  
==See Also==  
{{AMC8 box|year=2022|num-b=13|num-a=15}}
{{AMC8 box|year=2022|num-b=13|num-a=15}}
{{MAA Notice}}
{{MAA Notice}}
[[Category:Introductory Combinatorics Problems]]

Latest revision as of 16:35, 4 June 2025

Problem

In how many ways can the letters in $\textbf{BEEKEEPER}$ be rearranged so that two or more $\textbf{E}$s do not appear together?

$\textbf{(A) } 1 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 24 \qquad \textbf{(E) } 120$

Solution

All valid arrangements of the letters must be of the form \[\textbf{E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E}.\] The problem is equivalent to counting the arrangements of $\textbf{B},\textbf{K},\textbf{P},$ and $\textbf{R}$ into the four blanks, in which there are $4!=\boxed{\textbf{(D) } 24}$ ways.

~MRENTHUSIASM

Video Solution (A Clever Explanation You’ll Get Instantly)

https://youtu.be/tYWp6fcUAik?si=V8hv_zOn_zYOi9E5&t=1740 ~hsnacademy

Video Solution by Math-X (First understand the problem!!!)

https://youtu.be/oUEa7AjMF2A?si=sMxdry7U6U_2bPZH&t=2168

~Math-X

Video Solution (CREATIVE THINKING!!!)

https://youtu.be/419vsFnrGeY

~Education, the Study of Everything

Video Solution

https://youtu.be/Ij9pAy6tQSg?t=1222

~Interstigation

Video Solution

https://youtu.be/p29Fe2dLGs8?t=212

~STEMbreezy

Video Solution

https://youtu.be/NmfnoSn3CDg

~savannahsolver

Video Solution

https://youtu.be/c6shf8oma5c

~harungurcan

Video Solution by Dr. David

https://youtu.be/iqjSY6kiEOk

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination