2019 AMC 10B Problems/Problem 10: Difference between revisions
| (5 intermediate revisions by 3 users not shown) | |||
| Line 18: | Line 18: | ||
Without loss of generality, let <math>AB</math> be a horizontal segment of length <math>10</math>. Now realize that <math>C</math> has to lie on one of the lines parallel to <math>AB</math> and vertically <math>20</math> units away from it. But <math>10+20+20</math> is already 50, and this doesn't form a triangle. Otherwise, without loss of generality, <math>AC<20</math>. Dropping altitude <math>CD</math>, we have a right triangle <math>ACD</math> with hypotenuse <math>AC<20</math> and leg <math>CD=20</math>, which is clearly impossible, again giving the answer as <math>\boxed{\textbf{(A) }0}</math>. | Without loss of generality, let <math>AB</math> be a horizontal segment of length <math>10</math>. Now realize that <math>C</math> has to lie on one of the lines parallel to <math>AB</math> and vertically <math>20</math> units away from it. But <math>10+20+20</math> is already 50, and this doesn't form a triangle. Otherwise, without loss of generality, <math>AC<20</math>. Dropping altitude <math>CD</math>, we have a right triangle <math>ACD</math> with hypotenuse <math>AC<20</math> and leg <math>CD=20</math>, which is clearly impossible, again giving the answer as <math>\boxed{\textbf{(A) }0}</math>. | ||
==Solution 3== | ==Solution 3 (A bit tedious)== | ||
We have: | We have: | ||
| Line 45: | Line 45: | ||
<math>x^2 - 40x + \left(375 + \frac{80}{3}\right) = 0</math> and the discriminant is <math>\left((-40)^2 - 4 \times 1 \times 401 \frac{2}{3}\right) < 0</math>. Thus, there are no real solutions. | <math>x^2 - 40x + \left(375 + \frac{80}{3}\right) = 0</math> and the discriminant is <math>\left((-40)^2 - 4 \times 1 \times 401 \frac{2}{3}\right) < 0</math>. Thus, there are no real solutions. | ||
~hashbrown2009 | |||
==Solution 4 (graphing)== | |||
First, let's assume that A and B are <math>(-5,0)</math> and <math>(5,0)</math> respectively. The graph of "the perimeter is <math>50</math>" means that <math>\overline{AC}+\overline{BC}=50-10=40</math>. So this is the graph of an ellipse (memorize that!). Now let the endpoints of the major axis be <math>(-x,0)</math> and <math>(x,0)</math>. Then <math>(x-5)+(x+5)=40</math> and <math>x=20</math>. So the <math>2</math> endpoints of the major axis are <math>(-20,0)</math> and <math>(20,0)</math>. We can also figure out the endpoints of the minor axis must have a y-coordinate less than <math>20</math>. It is actually <math>\sqrt{395}</math>. | |||
Now, we consider "the area is <math>100</math>". Since the base has length <math>10</math>, then the height must have length <math>20</math>. So the graph of "the area is 100" is <math>2</math> lines, one at <math>y=20</math> and the other at <math>y=-20</math>. However, this graph does NOT intersect the ellipse, as <math>\sqrt{395} < 20</math>. So, there are no intersections and thus no solutions, so the answer is <math>\boxed{\textbf{(A) }0}</math>. | |||
~Yrock | |||
==Video Solution== | ==Video Solution== | ||
Latest revision as of 11:58, 15 March 2025
- The following problem is from both the 2019 AMC 10B #10 and 2019 AMC 12B #6, so both problems redirect to this page.
Problem
In a given plane, points
and
are
units apart. How many points
are there in the plane such that the perimeter of
is
units and the area of
is
square units?
Solution 1
Notice that whatever point we pick for
,
will be the base of the triangle. Without loss of generality, let points
and
be
and
, since for any other combination of points, we can just rotate the plane to make them
and
under a new coordinate system. When we pick point
, we have to make sure that its
-coordinate is
, because that's the only way the area of the triangle can be
.
Now when the perimeter is minimized, by symmetry, we put
in the middle, at
. We can easily see that
and
will both be
. The perimeter of this minimal triangle is
, which is larger than
. Since the minimum perimeter is greater than
, there is no triangle that satisfies the condition, giving us
.
~IronicNinja
Solution 2
Without loss of generality, let
be a horizontal segment of length
. Now realize that
has to lie on one of the lines parallel to
and vertically
units away from it. But
is already 50, and this doesn't form a triangle. Otherwise, without loss of generality,
. Dropping altitude
, we have a right triangle
with hypotenuse
and leg
, which is clearly impossible, again giving the answer as
.
Solution 3 (A bit tedious)
We have:
1. Area =
2. Perimeter =
3. Semiperimeter
We let:
1.
2.
3.
.
Heron's formula states that for real numbers
,
,
, and semiperimeter
, the area is
.
Plugging numbers in, we have
.
Square both sides, divide by
and expand the polynomial to get
.
and the discriminant is
. Thus, there are no real solutions.
~hashbrown2009
Solution 4 (graphing)
First, let's assume that A and B are
and
respectively. The graph of "the perimeter is
" means that
. So this is the graph of an ellipse (memorize that!). Now let the endpoints of the major axis be
and
. Then
and
. So the
endpoints of the major axis are
and
. We can also figure out the endpoints of the minor axis must have a y-coordinate less than
. It is actually
.
Now, we consider "the area is
". Since the base has length
, then the height must have length
. So the graph of "the area is 100" is
lines, one at
and the other at
. However, this graph does NOT intersect the ellipse, as
. So, there are no intersections and thus no solutions, so the answer is
.
~Yrock
Video Solution
~Education, the Study of Everything
Video Solution
~IceMatrix
~savannahsolver
See Also
| 2019 AMC 10B (Problems • Answer Key • Resources) | ||
| Preceded by Problem 9 |
Followed by Problem 11 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
| 2019 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 5 |
Followed by Problem 7 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing