Art of Problem Solving

2022 AMC 8 Problems/Problem 17: Difference between revisions

Dr david (talk | contribs)
No edit summary
Irfans123 (talk | contribs)
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
==Problem==
== Problem ==
 
If <math>n</math> is an even positive integer, the <math>\emph{double factorial}</math> notation <math>n!!</math> represents the product of all the even integers from <math>2</math> to <math>n</math>. For example, <math>8!! = 2 \cdot 4 \cdot 6 \cdot 8</math>. What is the units digit of the following sum? <cmath>2!! + 4!! + 6!! + \cdots + 2018!! + 2020!! + 2022!!</cmath>
If <math>n</math> is an even positive integer, the <math>\emph{double factorial}</math> notation <math>n!!</math> represents the product of all the even integers from <math>2</math> to <math>n</math>. For example, <math>8!! = 2 \cdot 4 \cdot 6 \cdot 8</math>. What is the units digit of the following sum? <cmath>2!! + 4!! + 6!! + \cdots + 2018!! + 2020!! + 2022!!</cmath>


<math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8</math>
<math>\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8</math>


==Solution==
== Solution 1 ==


Notice that once <math>n>8,</math> the units digit of <math>n!!</math> will be <math>0</math> because there will be a factor of <math>10.</math> Thus, we only need to calculate the units digit of <cmath>2!!+4!!+6!!+8!! = 2+8+48+48\cdot8.</cmath> We only care about units digits, so we have <math>2+8+8+8\cdot8,</math> which has the same units digit as <math>2+8+8+4.</math> The answer is <math>\boxed{\textbf{(B) } 2}.</math>
Notice that once <math>n>8,</math> the units digit of <math>n!!</math> will be <math>0</math> because there will be a factor of <math>10.</math> Thus, we only need to calculate the units digit of <cmath>2!!+4!!+6!!+8!! = 2+8+48+48\cdot8.</cmath> We only care about units digits, so we have <math>2+8+8+8\cdot8,</math> which has the same units digit as <math>2+8+8+4.</math> The answer is <math>\boxed{\textbf{(B) } 2}.</math>
Line 10: Line 11:
~wamofan
~wamofan


==Video Solution by Math-X (First understand the problem!!!)==
==Solution 2 (Solution 1 worded differently)==
https://youtu.be/oUEa7AjMF2A?si=f4lLO32DQ4Yxdpkv&t=2925


~Math-X
We can see that after <math>8!!</math> in the sequence, the units digit is always <math>0</math> (every value after <math>8!!</math> is a multiple of <math>10</math>). Therefore, our answer is the sum of the units digits of <math>2!!, 4!!, 6!!,</math> and <math>8!!</math> respectively. This sum is equal to <math>2 + 8 + 8 + 4</math>, or <math>\boxed{\textbf{(B) } 2}.</math>


==Video Solution (🚀Under 2 min🚀)==
~Irfans123
https://youtu.be/qOBzhBx8uw4


~Education, the Study of Everything
== Video Solution 1 ==
 
[//youtu.be/tYWp6fcUAik?si=V8hv_zOn_zYOi9E5&t=2049 ~hsnacademy]
 
== Video Solution 2 ==
 
[//youtu.be/oUEa7AjMF2A?si=f4lLO32DQ4Yxdpkv&t=2925 ~Math-X]
==Video Solution 3 ==
 
[//youtu.be/qOBzhBx8uw4 ~Education, the Study of Everything]
 
== Video Solution 4 ==


== Video Solution==
https://youtu.be/wp9tOyJ3YQY?t=146
https://youtu.be/wp9tOyJ3YQY?t=146


==Video Solution==
== Video Solution 5 ==
https://youtu.be/Ij9pAy6tQSg?t=1461
 
[//youtu.be/Ij9pAy6tQSg?t=1461 ~Interstigation]


~Interstigation
== Video Solution 6 ==


https://www.youtube.com/watch?v=FTVLuv_n9bY
[//youtu.be/hs6y4PWnoWg?t=80 ~STEMbreezy]


~Ismail.Maths
== Video Solution 7 ==
[//youtu.be/BbGqQaqE2rM ~savannahsolver]


==Video Solution==
== Video Solution 8 ==
https://youtu.be/hs6y4PWnoWg?t=80


~STEMbreezy
[//www.youtube.com/watch?v=EVYrVkkpCo8 ~Jamesmath]


==Video Solution==
== Video Solution 9 ==
https://youtu.be/BbGqQaqE2rM


~savannahsolver
https://youtu.be/1Vg8Mt0bSbQ


==Video Solution 8==
== Video Solution 10 ==
https://www.youtube.com/watch?v=EVYrVkkpCo8


~Jamesmath
[//youtube.com/FTVLuv_n9bY ~Ismail.Maths]


==Video Solution by Dr. David==
== See Also ==
https://youtu.be/1Vg8Mt0bSbQ


==See Also==
{{AMC8 box|year=2022|num-b=16|num-a=18}}
{{AMC8 box|year=2022|num-b=16|num-a=18}}
{{MAA Notice}}
{{MAA Notice}}
[[Category:Introductory Number Theory Problems]]

Latest revision as of 01:14, 5 March 2025

Problem

If $n$ is an even positive integer, the $\emph{double factorial}$ notation $n!!$ represents the product of all the even integers from $2$ to $n$. For example, $8!! = 2 \cdot 4 \cdot 6 \cdot 8$. What is the units digit of the following sum? \[2!! + 4!! + 6!! + \cdots + 2018!! + 2020!! + 2022!!\]

$\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8$

Solution 1

Notice that once $n>8,$ the units digit of $n!!$ will be $0$ because there will be a factor of $10.$ Thus, we only need to calculate the units digit of \[2!!+4!!+6!!+8!! = 2+8+48+48\cdot8.\] We only care about units digits, so we have $2+8+8+8\cdot8,$ which has the same units digit as $2+8+8+4.$ The answer is $\boxed{\textbf{(B) } 2}.$

~wamofan

Solution 2 (Solution 1 worded differently)

We can see that after $8!!$ in the sequence, the units digit is always $0$ (every value after $8!!$ is a multiple of $10$). Therefore, our answer is the sum of the units digits of $2!!, 4!!, 6!!,$ and $8!!$ respectively. This sum is equal to $2 + 8 + 8 + 4$, or $\boxed{\textbf{(B) } 2}.$

~Irfans123

Video Solution 1

~hsnacademy

Video Solution 2

~Math-X

Video Solution 3

~Education, the Study of Everything

Video Solution 4

https://youtu.be/wp9tOyJ3YQY?t=146

Video Solution 5

~Interstigation

Video Solution 6

~STEMbreezy

Video Solution 7

~savannahsolver

Video Solution 8

~Jamesmath

Video Solution 9

https://youtu.be/1Vg8Mt0bSbQ

Video Solution 10

~Ismail.Maths

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing