2012 AMC 8 Problems/Problem 20: Difference between revisions
Lopkiloinm (talk | contribs) |
|||
| (25 intermediate revisions by 7 users not shown) | |||
| Line 18: | Line 18: | ||
==Solution 2== | ==Solution 2== | ||
Change <math>7/21</math> into <math>1/3</math>; | Change <math>7/21</math> into <math>1/3</math>; | ||
<cmath>\frac{1}{3}\cdot\frac{5}{5}=\frac{5}{15}</cmath> | <cmath>\frac{1}{3}\cdot\frac{5}{5}=\frac{5}{15}</cmath> | ||
| Line 40: | Line 28: | ||
Therefore, our answer is <math> \boxed{\textbf{(B)}\ \frac{5}{19}<\frac{7}{21}<\frac{9}{23}} </math>. | Therefore, our answer is <math> \boxed{\textbf{(B)}\ \frac{5}{19}<\frac{7}{21}<\frac{9}{23}} </math>. | ||
==Solution | ==Solution 3 (quick and easy)== | ||
We know that <math>\frac{5}{19}</math> is <math>\frac{14}{19}</math> away from <math>1</math>, <math>\frac{7}{21}</math> is <math>\frac{14}{21}</math> away from <math>1</math>, and <math>\frac{9}{23}</math> is <math>\frac{14}{23}</math> away from <math>1</math>. Since <math>\frac{14}{19}</math> is the largest, we know that it is the farthest away from 0, and <math>\frac{14}{23}</math> is the smallest, so it is the closest to 0. Therefore, our answer is <math> \boxed{\textbf{(B)}\ \frac{5}{19}<\frac{7}{21}<\frac{9}{23}} </math>. | |||
<math>\frac{ | |||
~monkey_land | |||
edited by ~NXC | |||
==Video Solution== | |||
https://youtu.be/pU1zjw--K8M ~savannahsolver | |||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2012|num-b=19|num-a=21}} | {{AMC8 box|year=2012|num-b=19|num-a=21}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 14:01, 17 November 2024
Problem
What is the correct ordering of the three numbers
,
, and
, in increasing order?
Solution 1
The value of
is
. Now we give all the fractions a common denominator.
Ordering the fractions from least to greatest, we find that they are in the order listed. Therefore, our final answer is
.
Solution 2
Change
into
;
And
Therefore, our answer is
.
Solution 3 (quick and easy)
We know that
is
away from
,
is
away from
, and
is
away from
. Since
is the largest, we know that it is the farthest away from 0, and
is the smallest, so it is the closest to 0. Therefore, our answer is
.
~monkey_land edited by ~NXC
Video Solution
https://youtu.be/pU1zjw--K8M ~savannahsolver
See Also
| 2012 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 19 |
Followed by Problem 21 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing