2023 AMC 12A Problems/Problem 23: Difference between revisions
import |
|||
| (18 intermediate revisions by 9 users not shown) | |||
| Line 5: | Line 5: | ||
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{an infinite number}</math> | <math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{an infinite number}</math> | ||
==Solution== | ==Solution 1: AM-GM Inequality== | ||
Using the AM-GM inequality on the two terms in each factor on the left-hand side, we get | |||
<cmath>(1+2a)(2+2b)(2a+b) \ge 8\sqrt{2a \cdot 4b \cdot 2ab}= 32ab,</cmath> | |||
This means the equality condition must be satisfied. Therefore, we must have <math>1 = 2a = b</math>, so the only solution is <math>\boxed{\textbf{(B) }1}</math>. | |||
~ semistevehan | |||
==Solution 2: Sum Of Squares== | |||
Equation <math>(1+2a)(2+2b)(2a+b)=32ab</math> is equivalent to | |||
<cmath>b(2a-1)^2+2a(b-1)^2+(2a-b)^2=0,</cmath> | |||
where <math>a</math>, <math>b>0</math>. Therefore <math>2a-1=b-1=2a-b=0</math>, so <math>(a,b)=\left(\tfrac12,1\right)</math>. Hence the answer is <math>\boxed{\textbf{(B) }1}</math>. | |||
==Solution 3: == | |||
<math>(1+2a)(1+b)(2a+b)=16ab</math>, | |||
let <math>x=2a, y=b</math>, then it becomes <math>(1+x)(1+y)(x+y)=8xy</math>, or <math>(1+x+y+xy)(x+y)=8xy</math>. | |||
Let <math>\alpha=x+y, \beta=xy</math>, it becomes <math>(1+\alpha+\beta)\alpha=8\beta</math>, | |||
notice we have <math>\alpha^2-4\beta=(x-y)^2\ge 0</math>, now <math>\beta= \frac{\alpha(1+\alpha)}{(8-\alpha)}</math> | |||
<math>\alpha^2\ge 4\beta=4\alpha(1+\alpha)/(8-\alpha)</math> (notice we must have <math>8-\alpha>0</math>), <math>(8-\alpha)\alpha\ge 4(1+\alpha)</math>, <math>(\alpha-2)^2\le 0</math>, <math>\alpha=2</math>, | |||
and <math>\beta=1</math>, | |||
so <math>x=y=1</math> and <math>a=\frac12, b=1</math> is the only solution. | |||
answer is <math>\boxed{\textbf {(B)}} </math> | |||
~szhangmath | |||
==Video Solution== | |||
https://youtu.be/bRQ7xBm1hFc | |||
~MathKatana | |||
==Video Solution 1 by OmegaLearn== | |||
https://youtu.be/LP4HSoaOCSU | |||
==Video Solution by MOP 2024== | |||
https://youtu.be/kkx7sm6-ZE8 | |||
~r00tsOfUnity | |||
==Video Solution== | |||
https://youtu.be/ZKdnv8MsEDI | |||
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | |||
==See also== | ==See also== | ||
{{AMC12 box|ab=A|year=2023|num-b=22|num-a=24}} | {{AMC12 box|ab=A|year=2023|num-b=22|num-a=24}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 13:49, 2 November 2024
Problem
How many ordered pairs of positive real numbers
satisfy the equation
Solution 1: AM-GM Inequality
Using the AM-GM inequality on the two terms in each factor on the left-hand side, we get
This means the equality condition must be satisfied. Therefore, we must have
, so the only solution is
.
~ semistevehan
Solution 2: Sum Of Squares
Equation
is equivalent to
where
,
. Therefore
, so
. Hence the answer is
.
Solution 3:
,
let
, then it becomes
, or
.
Let
, it becomes
,
notice we have
, now
(notice we must have
),
,
,
,
and
,
so
and
is the only solution.
answer is
~szhangmath
Video Solution
https://youtu.be/bRQ7xBm1hFc ~MathKatana
Video Solution 1 by OmegaLearn
Video Solution by MOP 2024
~r00tsOfUnity
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
| 2023 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 22 |
Followed by Problem 24 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: File missing