2010 AMC 8 Problems/Problem 17: Difference between revisions
Undo griefing |
This solution either didn't make sense or was incorrect. |
||
| (18 intermediate revisions by 9 users not shown) | |||
| Line 40: | Line 40: | ||
<math> \textbf{(A)}\ \frac{2}{5}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ \frac{3}{5}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{3}{4} </math> | <math> \textbf{(A)}\ \frac{2}{5}\qquad\textbf{(B)}\ \frac{1}{2}\qquad\textbf{(C)}\ \frac{3}{5}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{3}{4} </math> | ||
==Solution == | ==Solution 1== | ||
We see that half the area of the octagon is <math>5</math>. We see that the triangle area is <math>5-1 = 4</math>. That means that <math>\frac{5h}{2} = 4 \rightarrow h=\frac{8}{5}</math>. | We see that half the area of the octagon is <math>5</math>. We see that the triangle area is <math>5-1 = 4</math>. That means that <math>\frac{5h}{2} = 4 \rightarrow h=\frac{8}{5}</math>. | ||
<cmath>\text{QY}=\frac{8}{5} - 1 = \frac{3}{5}</cmath> | <cmath>\text{QY}=\frac{8}{5} - 1 = \frac{3}{5}</cmath> | ||
Meaning, <math>\frac{\frac{2}{5}}{\frac{3}{5}} = \boxed{\textbf{(D) }\frac{2}{3}}</math> | Meaning, <math>\frac{\frac{2}{5}}{\frac{3}{5}} = \boxed{\textbf{(D) }\frac{2}{3}}</math> | ||
==Solution 2== | |||
Like stated in solution 1, we know that half the area of the octagon is <math>5</math>. | |||
After moving the square from the bottom right to the top left, the area of the resulting trapezoid is <math>5+1=6</math>. | |||
<math>5(XQ+2)/2=6</math>. Solving for <math>XQ</math>, we get <math>XQ=2/5</math>. | |||
Subtracting <math>2/5</math> from <math>1</math>, we get <math>QY=3/5</math>. | |||
Therefore, the answer comes out to <math>\boxed{\textbf{(D) }\frac{2}{3}}</math> | |||
~kempwood | |||
==Video Solution by OmegaLearn== | |||
https://youtu.be/j3QSD5eDpzU?t=937 | |||
==Video by MathTalks== | |||
https://www.youtube.com/watch?v=KSYVsSJDX-0&feature=youtu.be | |||
==Video Solution by WhyMath== | |||
https://youtu.be/N7Yu9-bLqls | |||
~savannahsolver | |||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2010|num-b=16|num-a=18}} | {{AMC8 box|year=2010|num-b=16|num-a=18}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 20:00, 23 October 2024
Problem
The diagram shows an octagon consisting of
unit squares. The portion below
is a unit square and a triangle with base
. If
bisects the area of the octagon, what is the ratio
?
Solution 1
We see that half the area of the octagon is
. We see that the triangle area is
. That means that
.
Meaning,
Solution 2
Like stated in solution 1, we know that half the area of the octagon is
.
After moving the square from the bottom right to the top left, the area of the resulting trapezoid is
.
. Solving for
, we get
.
Subtracting
from
, we get
.
Therefore, the answer comes out to
~kempwood
Video Solution by OmegaLearn
https://youtu.be/j3QSD5eDpzU?t=937
Video by MathTalks
https://www.youtube.com/watch?v=KSYVsSJDX-0&feature=youtu.be
Video Solution by WhyMath
~savannahsolver
See Also
| 2010 AMC 8 (Problems • Answer Key • Resources) | ||
| Preceded by Problem 16 |
Followed by Problem 18 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. Error creating thumbnail: Unable to save thumbnail to destination